基于细胞神经网络的散焦模糊估计

Jongsu Lee, A.S. Fathi, S. Song
{"title":"基于细胞神经网络的散焦模糊估计","authors":"Jongsu Lee, A.S. Fathi, S. Song","doi":"10.1109/CNNA.2010.5430249","DOIUrl":null,"url":null,"abstract":"Blur identification is one of the most important parts of digital image processing. A conventional blur that occurs in images is out of focus, which is generated because of lens defocus. In this sense, many researchers have presented methods to estimate defocus blur so far. This paper shows how the Cellular Neural Network (CNN) can be used to estimate defocus blur parameter. After the point spread function (PSF) parameter is obtained by the CNN, defocused blur images can be restored effectively.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Defocus blur estimation using a Cellular Neural Network\",\"authors\":\"Jongsu Lee, A.S. Fathi, S. Song\",\"doi\":\"10.1109/CNNA.2010.5430249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blur identification is one of the most important parts of digital image processing. A conventional blur that occurs in images is out of focus, which is generated because of lens defocus. In this sense, many researchers have presented methods to estimate defocus blur so far. This paper shows how the Cellular Neural Network (CNN) can be used to estimate defocus blur parameter. After the point spread function (PSF) parameter is obtained by the CNN, defocused blur images can be restored effectively.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

模糊识别是数字图像处理的重要组成部分之一。图像中出现的传统模糊是失焦,这是由于镜头离焦而产生的。在这个意义上,许多研究者提出了估计离焦模糊的方法。本文介绍了如何使用细胞神经网络(CNN)来估计离焦模糊参数。通过CNN获取点扩散函数(PSF)参数后,可以有效地恢复离焦模糊图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defocus blur estimation using a Cellular Neural Network
Blur identification is one of the most important parts of digital image processing. A conventional blur that occurs in images is out of focus, which is generated because of lens defocus. In this sense, many researchers have presented methods to estimate defocus blur so far. This paper shows how the Cellular Neural Network (CNN) can be used to estimate defocus blur parameter. After the point spread function (PSF) parameter is obtained by the CNN, defocused blur images can be restored effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信