RETR:端到端引用表达式理解与变形

Yang Rui
{"title":"RETR:端到端引用表达式理解与变形","authors":"Yang Rui","doi":"10.1109/ICCWAMTIP56608.2022.10016599","DOIUrl":null,"url":null,"abstract":"Referring Expression Comprehension (REC) is a basic and challenging task to identify the referred region given a language expression. However, existing two-stage or one-stage methods suffer from the region proposals, the limited range of visual context and the incomplete cross-modal alignment. To address these problems, we propose a simple yet effective one-stage model, termed REC TRansformer (RETR), which is trained end-to-end. Different from the manually designed multi-modal fusion, RETR adopts a transformer decoder with alternately stacked self-attention and cross-attention layers to capture the global visual context and establish the detailed visual-linguistic correspondence. Moreover, we utilize multiple learnable tokens to obtain diverse yet complementary region representations to give the accurate prediction. Extensive experiments are conducted on four datasets and RETR achieves the state-of-the-art performance.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RETR: End-To-End Referring Expression Comprehension with Transformers\",\"authors\":\"Yang Rui\",\"doi\":\"10.1109/ICCWAMTIP56608.2022.10016599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring Expression Comprehension (REC) is a basic and challenging task to identify the referred region given a language expression. However, existing two-stage or one-stage methods suffer from the region proposals, the limited range of visual context and the incomplete cross-modal alignment. To address these problems, we propose a simple yet effective one-stage model, termed REC TRansformer (RETR), which is trained end-to-end. Different from the manually designed multi-modal fusion, RETR adopts a transformer decoder with alternately stacked self-attention and cross-attention layers to capture the global visual context and establish the detailed visual-linguistic correspondence. Moreover, we utilize multiple learnable tokens to obtain diverse yet complementary region representations to give the accurate prediction. Extensive experiments are conducted on four datasets and RETR achieves the state-of-the-art performance.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指称表达理解(REC)是一项基本且具有挑战性的任务,目的是识别给定语言表达的指称区域。然而,现有的两阶段或一阶段方法存在区域建议、视觉环境范围有限和跨模态对齐不完整等问题。为了解决这些问题,我们提出了一个简单而有效的单阶段模型,称为REC变压器(RETR),它是端到端训练的。与人工设计的多模态融合不同,RETR采用自注意层和交叉注意层交替堆叠的变压器解码器,捕捉全局视觉语境,建立详细的视觉语言对应关系。此外,我们利用多个可学习的标记来获得不同但互补的区域表示,以给出准确的预测。在四个数据集上进行了大量的实验,RETR达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RETR: End-To-End Referring Expression Comprehension with Transformers
Referring Expression Comprehension (REC) is a basic and challenging task to identify the referred region given a language expression. However, existing two-stage or one-stage methods suffer from the region proposals, the limited range of visual context and the incomplete cross-modal alignment. To address these problems, we propose a simple yet effective one-stage model, termed REC TRansformer (RETR), which is trained end-to-end. Different from the manually designed multi-modal fusion, RETR adopts a transformer decoder with alternately stacked self-attention and cross-attention layers to capture the global visual context and establish the detailed visual-linguistic correspondence. Moreover, we utilize multiple learnable tokens to obtain diverse yet complementary region representations to give the accurate prediction. Extensive experiments are conducted on four datasets and RETR achieves the state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信