冷冻治疗过程中服装效果的计算机模拟分析

D. Yerezhep, A. Baranov
{"title":"冷冻治疗过程中服装效果的计算机模拟分析","authors":"D. Yerezhep, A. Baranov","doi":"10.17586/1606-4313-2019-18-4-84-91","DOIUrl":null,"url":null,"abstract":"This article discusses the effect of simulated shoes made of different materials on providing protection from exposure to cryogenic gas and discusses local changes in heat flow and temperature curve along the skin of the whole-body cryotherapy object (WBC). In the work protective shoes (protective layer) of various materials, such as cotton, wool, leather, and rubber, were considered and modeled. It was also shown that, due to a local excess, for a more effective WBC procedure it is necessary to achieve uniform temperature dependence along the length of the object under study. The numerical analysis in this work was carried out by modeling the process of non-stationary heat exchange through a multilayer object. The modeling of the WBC object skin included such layers as: epithelium, fat layer, and muscle layer. It was decided to simulate and solve the problem with the use of the finite element method by specialized software. To describe biological heat an equation was used using the Penns approximation. Cryogenic gas flow was described by a turbulent model. This article describes a model that is close to reality with some assumptions, but this model allows experimenting, without a harm to the patient, to increase the therapeutic effect. The results can be used for the most convenient choice of safety shoes, as well as to further improve the efficiency and safety of the patient.","PeriodicalId":148431,"journal":{"name":"Journal International Academy of Refrigeration","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the clothing effect in the procedure of cryotherapy using computer simulation\",\"authors\":\"D. Yerezhep, A. Baranov\",\"doi\":\"10.17586/1606-4313-2019-18-4-84-91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the effect of simulated shoes made of different materials on providing protection from exposure to cryogenic gas and discusses local changes in heat flow and temperature curve along the skin of the whole-body cryotherapy object (WBC). In the work protective shoes (protective layer) of various materials, such as cotton, wool, leather, and rubber, were considered and modeled. It was also shown that, due to a local excess, for a more effective WBC procedure it is necessary to achieve uniform temperature dependence along the length of the object under study. The numerical analysis in this work was carried out by modeling the process of non-stationary heat exchange through a multilayer object. The modeling of the WBC object skin included such layers as: epithelium, fat layer, and muscle layer. It was decided to simulate and solve the problem with the use of the finite element method by specialized software. To describe biological heat an equation was used using the Penns approximation. Cryogenic gas flow was described by a turbulent model. This article describes a model that is close to reality with some assumptions, but this model allows experimenting, without a harm to the patient, to increase the therapeutic effect. The results can be used for the most convenient choice of safety shoes, as well as to further improve the efficiency and safety of the patient.\",\"PeriodicalId\":148431,\"journal\":{\"name\":\"Journal International Academy of Refrigeration\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal International Academy of Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17586/1606-4313-2019-18-4-84-91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal International Academy of Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17586/1606-4313-2019-18-4-84-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了由不同材料制成的模拟鞋对低温气体暴露的保护作用,并讨论了全身冷冻治疗对象(WBC)皮肤局部热流和温度曲线的变化。在工作中,对棉、毛、皮、橡胶等各种材料的防护鞋(保护层)进行了考虑和建模。还表明,由于局部过剩,为了更有效的WBC程序,有必要实现沿研究对象长度的均匀温度依赖。本文的数值分析是通过模拟多层物体的非稳态换热过程来进行的。WBC对象皮肤的建模包括:上皮层、脂肪层和肌肉层。决定利用专门的软件对该问题进行有限元模拟和求解。为了描述生物热,使用了一个使用佩恩近似的方程。用湍流模型描述了低温气体的流动。这篇文章描述了一个接近现实的模型,有一些假设,但这个模型允许实验,而不伤害病人,以提高治疗效果。该结果可用于最方便的安全鞋选择,以及进一步提高患者的工作效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the clothing effect in the procedure of cryotherapy using computer simulation
This article discusses the effect of simulated shoes made of different materials on providing protection from exposure to cryogenic gas and discusses local changes in heat flow and temperature curve along the skin of the whole-body cryotherapy object (WBC). In the work protective shoes (protective layer) of various materials, such as cotton, wool, leather, and rubber, were considered and modeled. It was also shown that, due to a local excess, for a more effective WBC procedure it is necessary to achieve uniform temperature dependence along the length of the object under study. The numerical analysis in this work was carried out by modeling the process of non-stationary heat exchange through a multilayer object. The modeling of the WBC object skin included such layers as: epithelium, fat layer, and muscle layer. It was decided to simulate and solve the problem with the use of the finite element method by specialized software. To describe biological heat an equation was used using the Penns approximation. Cryogenic gas flow was described by a turbulent model. This article describes a model that is close to reality with some assumptions, but this model allows experimenting, without a harm to the patient, to increase the therapeutic effect. The results can be used for the most convenient choice of safety shoes, as well as to further improve the efficiency and safety of the patient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信