机电对象控制系统中神经网络参数的遗传算法优化

M. P. Belov, O. Zolotov
{"title":"机电对象控制系统中神经网络参数的遗传算法优化","authors":"M. P. Belov, O. Zolotov","doi":"10.1109/SCM.2015.7190490","DOIUrl":null,"url":null,"abstract":"This study investigates the effectiveness of the genetic algorithm evolved neural network and its application in the drive control systems of electromechanical objects. The methodology adopts a real coded GA strategy using datasets in a series of experiments that evaluate the effects on network performance of different choices of network parameters.","PeriodicalId":106868,"journal":{"name":"2015 XVIII International Conference on Soft Computing and Measurements (SCM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimization of parameters of neural networks by genetic algorithm in the control systems of electromechanical objects\",\"authors\":\"M. P. Belov, O. Zolotov\",\"doi\":\"10.1109/SCM.2015.7190490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effectiveness of the genetic algorithm evolved neural network and its application in the drive control systems of electromechanical objects. The methodology adopts a real coded GA strategy using datasets in a series of experiments that evaluate the effects on network performance of different choices of network parameters.\",\"PeriodicalId\":106868,\"journal\":{\"name\":\"2015 XVIII International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 XVIII International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2015.7190490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 XVIII International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2015.7190490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了遗传算法演化神经网络的有效性及其在机电对象驱动控制系统中的应用。该方法采用一种真实编码的遗传算法策略,利用一系列实验数据集来评估不同网络参数选择对网络性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of parameters of neural networks by genetic algorithm in the control systems of electromechanical objects
This study investigates the effectiveness of the genetic algorithm evolved neural network and its application in the drive control systems of electromechanical objects. The methodology adopts a real coded GA strategy using datasets in a series of experiments that evaluate the effects on network performance of different choices of network parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信