{"title":"利用外源数据改进用于每日全球辐射预报的人工神经网络","authors":"C. Paoli, C. Voyant, M. Muselli, M. Nivet","doi":"10.1109/EEEIC.2010.5490018","DOIUrl":null,"url":null,"abstract":"This paper presents an application of Artificial Neural Networks (ANNs) in the renewable energy domain and, more particularly, to predict solar energy. We look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. In previous studies, we have demonstrated that an optimized ANN with endogenous inputs can forecast the solar radiation on a horizontal surface with acceptable errors. Thus we propose to study the contribution of exogenous meteorological data to our optimized PMC and compare with different forecasting methods used previously: a naïve forecaster like persistence and an ANN with preprocessing using only endogenous inputs. Although intuitively the use of meteorological data may increase the quality of prediction, the obtained results are relatively mixed. The use of exogenous data generates a decrease of nRMSE between 0.5% and 1% for the two studied locations. The absolute error (RMSE) is decreased by 52 Wh/m2/day in the simple endogenous case and 335 Wh/m2/day for the persistence forecast.","PeriodicalId":197298,"journal":{"name":"2010 9th International Conference on Environment and Electrical Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Use of exogenous data to improve an Artificial Neural Networks dedicated to daily global radiation forecasting\",\"authors\":\"C. Paoli, C. Voyant, M. Muselli, M. Nivet\",\"doi\":\"10.1109/EEEIC.2010.5490018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application of Artificial Neural Networks (ANNs) in the renewable energy domain and, more particularly, to predict solar energy. We look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. In previous studies, we have demonstrated that an optimized ANN with endogenous inputs can forecast the solar radiation on a horizontal surface with acceptable errors. Thus we propose to study the contribution of exogenous meteorological data to our optimized PMC and compare with different forecasting methods used previously: a naïve forecaster like persistence and an ANN with preprocessing using only endogenous inputs. Although intuitively the use of meteorological data may increase the quality of prediction, the obtained results are relatively mixed. The use of exogenous data generates a decrease of nRMSE between 0.5% and 1% for the two studied locations. The absolute error (RMSE) is decreased by 52 Wh/m2/day in the simple endogenous case and 335 Wh/m2/day for the persistence forecast.\",\"PeriodicalId\":197298,\"journal\":{\"name\":\"2010 9th International Conference on Environment and Electrical Engineering\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 9th International Conference on Environment and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2010.5490018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 9th International Conference on Environment and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2010.5490018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of exogenous data to improve an Artificial Neural Networks dedicated to daily global radiation forecasting
This paper presents an application of Artificial Neural Networks (ANNs) in the renewable energy domain and, more particularly, to predict solar energy. We look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. In previous studies, we have demonstrated that an optimized ANN with endogenous inputs can forecast the solar radiation on a horizontal surface with acceptable errors. Thus we propose to study the contribution of exogenous meteorological data to our optimized PMC and compare with different forecasting methods used previously: a naïve forecaster like persistence and an ANN with preprocessing using only endogenous inputs. Although intuitively the use of meteorological data may increase the quality of prediction, the obtained results are relatively mixed. The use of exogenous data generates a decrease of nRMSE between 0.5% and 1% for the two studied locations. The absolute error (RMSE) is decreased by 52 Wh/m2/day in the simple endogenous case and 335 Wh/m2/day for the persistence forecast.