Anderson模型的重整化群极限

V. Chulaevsky
{"title":"Anderson模型的重整化群极限","authors":"V. Chulaevsky","doi":"10.13189/UJAM.2016.040401","DOIUrl":null,"url":null,"abstract":"We present the adaptive feedback scaling method for the Anderson localization analysis of several large classes of random Hamiltonians in discrete and continuous disordered media. We also give a constructive scale-free criterion of localization with asymptotically exponential decay of eigenfunction correlators, which can be verified in applications with the help of numerical methods.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Renormalization Group Limit of Anderson Models\",\"authors\":\"V. Chulaevsky\",\"doi\":\"10.13189/UJAM.2016.040401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the adaptive feedback scaling method for the Anderson localization analysis of several large classes of random Hamiltonians in discrete and continuous disordered media. We also give a constructive scale-free criterion of localization with asymptotically exponential decay of eigenfunction correlators, which can be verified in applications with the help of numerical methods.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2016.040401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2016.040401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了离散和连续无序介质中若干大类随机哈密顿量的自适应反馈标度分析方法。我们还给出了具有特征函数相关器渐近指数衰减的构造性无标度局部化判据,该判据可以在应用中借助数值方法进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormalization Group Limit of Anderson Models
We present the adaptive feedback scaling method for the Anderson localization analysis of several large classes of random Hamiltonians in discrete and continuous disordered media. We also give a constructive scale-free criterion of localization with asymptotically exponential decay of eigenfunction correlators, which can be verified in applications with the help of numerical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信