一种基于刚性和非刚性外观跟踪和识别的概率框架

F. D. L. Torre, Y. Yacoob, L. Davis
{"title":"一种基于刚性和非刚性外观跟踪和识别的概率框架","authors":"F. D. L. Torre, Y. Yacoob, L. Davis","doi":"10.1109/AFGR.2000.840679","DOIUrl":null,"url":null,"abstract":"This paper describes an unified probabilistic framework for appearance-based tracking of rigid and non-rigid objects. A spatio-temporal dependent shape-texture eigenspace and mixture of diagonal Gaussians are learned in a hidden Markov model (HMM)-like structure to better constrain the model and for recognition purposes. Particle filtering is used to track the object while switching between different shape/texture models. This framework allows recognition and temporal segmentation of activities. Additionally an automatic stochastic initialization is proposed, the number of states in the HMM are selected based on the Akaike information criterion and comparison with deterministic tracking for 2D models is discussed. Preliminary results of eye tracking, lip tracking and temporal segmentation of mouth events are presented.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A probabilistic framework for rigid and non-rigid appearance based tracking and recognition\",\"authors\":\"F. D. L. Torre, Y. Yacoob, L. Davis\",\"doi\":\"10.1109/AFGR.2000.840679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an unified probabilistic framework for appearance-based tracking of rigid and non-rigid objects. A spatio-temporal dependent shape-texture eigenspace and mixture of diagonal Gaussians are learned in a hidden Markov model (HMM)-like structure to better constrain the model and for recognition purposes. Particle filtering is used to track the object while switching between different shape/texture models. This framework allows recognition and temporal segmentation of activities. Additionally an automatic stochastic initialization is proposed, the number of states in the HMM are selected based on the Akaike information criterion and comparison with deterministic tracking for 2D models is discussed. Preliminary results of eye tracking, lip tracking and temporal segmentation of mouth events are presented.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文描述了一种基于外观的刚性和非刚性物体跟踪的统一概率框架。在一个类似隐马尔可夫模型(HMM)的结构中学习一个时空相关的形状纹理特征空间和对角高斯分布的混合,以更好地约束模型并用于识别目的。粒子滤波用于在不同形状/纹理模型之间切换时跟踪物体。该框架允许对活动进行识别和时间分割。此外,提出了一种自动随机初始化方法,根据赤池信息准则选择HMM中的状态数,并与二维模型的确定性跟踪进行了比较。给出了眼动跟踪、唇动跟踪和嘴巴事件时间分割的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic framework for rigid and non-rigid appearance based tracking and recognition
This paper describes an unified probabilistic framework for appearance-based tracking of rigid and non-rigid objects. A spatio-temporal dependent shape-texture eigenspace and mixture of diagonal Gaussians are learned in a hidden Markov model (HMM)-like structure to better constrain the model and for recognition purposes. Particle filtering is used to track the object while switching between different shape/texture models. This framework allows recognition and temporal segmentation of activities. Additionally an automatic stochastic initialization is proposed, the number of states in the HMM are selected based on the Akaike information criterion and comparison with deterministic tracking for 2D models is discussed. Preliminary results of eye tracking, lip tracking and temporal segmentation of mouth events are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信