基于块循环矩阵的神经网络加速器的高效软硬件协同设计方法

Yu Qin, Lei Gong, Zhendong Zheng, Chao Wang
{"title":"基于块循环矩阵的神经网络加速器的高效软硬件协同设计方法","authors":"Yu Qin, Lei Gong, Zhendong Zheng, Chao Wang","doi":"10.1109/CODES-ISSS55005.2022.00010","DOIUrl":null,"url":null,"abstract":"Nowadays, the scale of deep neural networks is getting larger and larger. These large-scale deep neural networks are both compute and memory intensive. To overcome these problems, we use block-circulant weight matrices and Fast Fourier Transform (FFT) to compress model and optimize computation. Compared to weight pruning, this method does not suffer from irregular networks. The main contributions of this paper include the implementation of a convolution module and a fully-connected module with High-Level Synthesis (HLS), deployment and performance test on FPGA platform. We use AlexNet as a case study, which demonstrates our design is more efficient than the FPGA2016.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-in-Progress: BloCirNN: An Efficient Software/hardware Codesign Approach for Neural Network Accelerators with Block-Circulant Matrix\",\"authors\":\"Yu Qin, Lei Gong, Zhendong Zheng, Chao Wang\",\"doi\":\"10.1109/CODES-ISSS55005.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the scale of deep neural networks is getting larger and larger. These large-scale deep neural networks are both compute and memory intensive. To overcome these problems, we use block-circulant weight matrices and Fast Fourier Transform (FFT) to compress model and optimize computation. Compared to weight pruning, this method does not suffer from irregular networks. The main contributions of this paper include the implementation of a convolution module and a fully-connected module with High-Level Synthesis (HLS), deployment and performance test on FPGA platform. We use AlexNet as a case study, which demonstrates our design is more efficient than the FPGA2016.\",\"PeriodicalId\":129167,\"journal\":{\"name\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODES-ISSS55005.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,深度神经网络的规模越来越大。这些大规模的深度神经网络都是计算和内存密集型的。为了克服这些问题,我们使用块循环权矩阵和快速傅里叶变换(FFT)来压缩模型和优化计算。与权值修剪相比,这种方法不受不规则网络的影响。本文的主要工作包括卷积模块和高阶综合全连接模块的实现,以及FPGA平台上的部署和性能测试。我们使用AlexNet作为案例研究,这表明我们的设计比FPGA2016更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: BloCirNN: An Efficient Software/hardware Codesign Approach for Neural Network Accelerators with Block-Circulant Matrix
Nowadays, the scale of deep neural networks is getting larger and larger. These large-scale deep neural networks are both compute and memory intensive. To overcome these problems, we use block-circulant weight matrices and Fast Fourier Transform (FFT) to compress model and optimize computation. Compared to weight pruning, this method does not suffer from irregular networks. The main contributions of this paper include the implementation of a convolution module and a fully-connected module with High-Level Synthesis (HLS), deployment and performance test on FPGA platform. We use AlexNet as a case study, which demonstrates our design is more efficient than the FPGA2016.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信