{"title":"手部姿势估计的监督vs.自监督预训练模型","authors":"Gyusang Cho, Chan-Hyun Youn","doi":"10.1109/ICTC55196.2022.9953011","DOIUrl":null,"url":null,"abstract":"Fully-supervised learning and self-supervised learning are two standard learning frameworks for training visual representations. While the superiority and inferiority of the two frameworks are not obscured when pre-training is performed, this paper aims to compare the transferability performance for the hand posture estimation task. We conduct the experiment on a supervised pre-trained model and 5 self-supervised pre-trained models. To this end, we conclude that self-supervised pre-trained models do not necessarily outperform their supervised pre-trained counterparts, while self-supervised pre-trained models lead to faster convergence of the neural network.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised vs. Self-supervised Pre-trained models for Hand Pose Estimation\",\"authors\":\"Gyusang Cho, Chan-Hyun Youn\",\"doi\":\"10.1109/ICTC55196.2022.9953011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully-supervised learning and self-supervised learning are two standard learning frameworks for training visual representations. While the superiority and inferiority of the two frameworks are not obscured when pre-training is performed, this paper aims to compare the transferability performance for the hand posture estimation task. We conduct the experiment on a supervised pre-trained model and 5 self-supervised pre-trained models. To this end, we conclude that self-supervised pre-trained models do not necessarily outperform their supervised pre-trained counterparts, while self-supervised pre-trained models lead to faster convergence of the neural network.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9953011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9953011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervised vs. Self-supervised Pre-trained models for Hand Pose Estimation
Fully-supervised learning and self-supervised learning are two standard learning frameworks for training visual representations. While the superiority and inferiority of the two frameworks are not obscured when pre-training is performed, this paper aims to compare the transferability performance for the hand posture estimation task. We conduct the experiment on a supervised pre-trained model and 5 self-supervised pre-trained models. To this end, we conclude that self-supervised pre-trained models do not necessarily outperform their supervised pre-trained counterparts, while self-supervised pre-trained models lead to faster convergence of the neural network.