{"title":"基于规则的智能控制系统中的多分辨率技术:一个通用的近似结果","authors":"Y. Yam, Hung T. Nguyen, V. Kreinovich","doi":"10.1109/ISIC.1999.796657","DOIUrl":null,"url":null,"abstract":"One of the main problems of fuzzy control is that the number of rules which are necessary to represent a given control strategy with a given accuracy, grows exponentially with the increase in accuracy. As a result, for reasonable accuracy and a reasonable number of input variables, a great number of rules is sometimes needed. In this paper, we start to solve this problem by pointing out that traditional one-step fuzzy rule bases, in which expert rules directly express control in terms of the input, are often a simplification of the actual multi-step expert reasoning. We show that a natural formalization of such expert reasoning leads to a universal approximation result in which the number of control rules does not increase with the increase in accuracy. Thus, this multi-resolution approach looks like a promising solution to the rule base explosion problem.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result\",\"authors\":\"Y. Yam, Hung T. Nguyen, V. Kreinovich\",\"doi\":\"10.1109/ISIC.1999.796657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main problems of fuzzy control is that the number of rules which are necessary to represent a given control strategy with a given accuracy, grows exponentially with the increase in accuracy. As a result, for reasonable accuracy and a reasonable number of input variables, a great number of rules is sometimes needed. In this paper, we start to solve this problem by pointing out that traditional one-step fuzzy rule bases, in which expert rules directly express control in terms of the input, are often a simplification of the actual multi-step expert reasoning. We show that a natural formalization of such expert reasoning leads to a universal approximation result in which the number of control rules does not increase with the increase in accuracy. Thus, this multi-resolution approach looks like a promising solution to the rule base explosion problem.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result
One of the main problems of fuzzy control is that the number of rules which are necessary to represent a given control strategy with a given accuracy, grows exponentially with the increase in accuracy. As a result, for reasonable accuracy and a reasonable number of input variables, a great number of rules is sometimes needed. In this paper, we start to solve this problem by pointing out that traditional one-step fuzzy rule bases, in which expert rules directly express control in terms of the input, are often a simplification of the actual multi-step expert reasoning. We show that a natural formalization of such expert reasoning leads to a universal approximation result in which the number of control rules does not increase with the increase in accuracy. Thus, this multi-resolution approach looks like a promising solution to the rule base explosion problem.