有限长度序列通用压缩冗余的结果

Ahmad Beirami, F. Fekri
{"title":"有限长度序列通用压缩冗余的结果","authors":"Ahmad Beirami, F. Fekri","doi":"10.1109/ISIT.2011.6033793","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the redundancy of universal coding schemes on smooth parametric sources in the finite-length regime. We derive an upper bound on the probability of the event that a sequence of length n, chosen using Jeffreys' prior from the family of parametric sources with d unknown parameters, is compressed with a redundancy smaller than (1 − ∈) d over 2 log n for any ∈ > 0. Our results also confirm that for large enough n and d, the average minimax redundancy provides a good estimate for the redundancy of most sources. Our result may be used to evaluate the performance of universal source coding schemes on finite-length sequences. Additionally, we precisely characterize the minimax redundancy for two-stage codes. We demonstrate that the two-stage assumption incurs a negligible redundancy especially when the number of source parameters is large. Finally, we show that the redundancy is significant in the compression of small sequences.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Results on the redundancy of universal compression for finite-length sequences\",\"authors\":\"Ahmad Beirami, F. Fekri\",\"doi\":\"10.1109/ISIT.2011.6033793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the redundancy of universal coding schemes on smooth parametric sources in the finite-length regime. We derive an upper bound on the probability of the event that a sequence of length n, chosen using Jeffreys' prior from the family of parametric sources with d unknown parameters, is compressed with a redundancy smaller than (1 − ∈) d over 2 log n for any ∈ > 0. Our results also confirm that for large enough n and d, the average minimax redundancy provides a good estimate for the redundancy of most sources. Our result may be used to evaluate the performance of universal source coding schemes on finite-length sequences. Additionally, we precisely characterize the minimax redundancy for two-stage codes. We demonstrate that the two-stage assumption incurs a negligible redundancy especially when the number of source parameters is large. Finally, we show that the redundancy is significant in the compression of small sequences.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6033793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文研究了有限长度区域光滑参数源上通用编码方案的冗余性。我们推导了一个事件概率的上界,即长度为n的序列,使用Jeffreys先验从具有d个未知参数的参数源族中选择,对于任何∈> 0,其冗余度小于(1−∈)d / 2 log n。我们的结果还证实,对于足够大的n和d,平均最小最大冗余为大多数源的冗余提供了一个很好的估计。我们的结果可用于评价通用源编码方案在有限长度序列上的性能。此外,我们还精确地描述了两级码的极大极小冗余。我们证明了两阶段假设产生的冗余可以忽略不计,特别是当源参数的数量很大时。最后,我们证明了冗余在小序列的压缩中是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results on the redundancy of universal compression for finite-length sequences
In this paper, we investigate the redundancy of universal coding schemes on smooth parametric sources in the finite-length regime. We derive an upper bound on the probability of the event that a sequence of length n, chosen using Jeffreys' prior from the family of parametric sources with d unknown parameters, is compressed with a redundancy smaller than (1 − ∈) d over 2 log n for any ∈ > 0. Our results also confirm that for large enough n and d, the average minimax redundancy provides a good estimate for the redundancy of most sources. Our result may be used to evaluate the performance of universal source coding schemes on finite-length sequences. Additionally, we precisely characterize the minimax redundancy for two-stage codes. We demonstrate that the two-stage assumption incurs a negligible redundancy especially when the number of source parameters is large. Finally, we show that the redundancy is significant in the compression of small sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信