基于社会注释的服务发现排序方法

D. Qu, Xudong Liu, Hailong Sun, Zicheng Huang
{"title":"基于社会注释的服务发现排序方法","authors":"D. Qu, Xudong Liu, Hailong Sun, Zicheng Huang","doi":"10.1109/SOSE.2011.6139099","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Web services, service discovery becomes an important and difficult issue. Traditional UDDI-based and WSDL-based methods of service discovery have low precision, and semantic-based service discovery methods are usually inefficient and time-consuming. We observe that social annotations can optimize both precision and efficiency of service discovery. In this paper, we propose a social-annotation-based service discovery method by using a learning to rank method, and propose two algorithms, Query Annotation Relevance (QAR) and Service Annotation Ranking (SAR), to calculate the dynamic Query-dependent feature and the static Query-independent feature respectively. Our experiments show that our method is effective for improving service discovery performance.","PeriodicalId":218577,"journal":{"name":"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ranking method for social-annotation-based service discovery\",\"authors\":\"D. Qu, Xudong Liu, Hailong Sun, Zicheng Huang\",\"doi\":\"10.1109/SOSE.2011.6139099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of Web services, service discovery becomes an important and difficult issue. Traditional UDDI-based and WSDL-based methods of service discovery have low precision, and semantic-based service discovery methods are usually inefficient and time-consuming. We observe that social annotations can optimize both precision and efficiency of service discovery. In this paper, we propose a social-annotation-based service discovery method by using a learning to rank method, and propose two algorithms, Query Annotation Relevance (QAR) and Service Annotation Ranking (SAR), to calculate the dynamic Query-dependent feature and the static Query-independent feature respectively. Our experiments show that our method is effective for improving service discovery performance.\",\"PeriodicalId\":218577,\"journal\":{\"name\":\"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOSE.2011.6139099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2011.6139099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着Web服务的快速发展,服务发现成为一个重要而困难的问题。传统的基于uddi和基于wsdl的服务发现方法精度较低,而基于语义的服务发现方法通常效率低下且耗时。我们观察到社交注释可以优化服务发现的精度和效率。本文提出了一种基于社交标注的服务发现方法,并提出了查询标注相关性(Query Annotation Relevance, QAR)和服务标注排序(service Annotation Ranking, SAR)两种算法,分别计算动态查询依赖特征和静态查询独立特征。实验结果表明,该方法可以有效地提高服务发现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ranking method for social-annotation-based service discovery
With the rapid growth of Web services, service discovery becomes an important and difficult issue. Traditional UDDI-based and WSDL-based methods of service discovery have low precision, and semantic-based service discovery methods are usually inefficient and time-consuming. We observe that social annotations can optimize both precision and efficiency of service discovery. In this paper, we propose a social-annotation-based service discovery method by using a learning to rank method, and propose two algorithms, Query Annotation Relevance (QAR) and Service Annotation Ranking (SAR), to calculate the dynamic Query-dependent feature and the static Query-independent feature respectively. Our experiments show that our method is effective for improving service discovery performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信