BERTIN:使用困惑采样的西班牙语模型的有效预训练

Javier de la Rosa, E. G. Ponferrada, Paulo Villegas, Pablo González de Prado Salas, Manu Romero, María Grandury
{"title":"BERTIN:使用困惑采样的西班牙语模型的有效预训练","authors":"Javier de la Rosa, E. G. Ponferrada, Paulo Villegas, Pablo González de Prado Salas, Manu Romero, María Grandury","doi":"10.48550/arXiv.2207.06814","DOIUrl":null,"url":null,"abstract":"The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pre-training sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name $\\textit{perplexity sampling}$ that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget. Our models are available at this $\\href{https://huggingface.co/bertin-project}{URL}$.","PeriodicalId":258781,"journal":{"name":"Proces. del Leng. Natural","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling\",\"authors\":\"Javier de la Rosa, E. G. Ponferrada, Paulo Villegas, Pablo González de Prado Salas, Manu Romero, María Grandury\",\"doi\":\"10.48550/arXiv.2207.06814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pre-training sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name $\\\\textit{perplexity sampling}$ that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget. Our models are available at this $\\\\href{https://huggingface.co/bertin-project}{URL}$.\",\"PeriodicalId\":258781,\"journal\":{\"name\":\"Proces. del Leng. Natural\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proces. del Leng. Natural\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.06814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proces. del Leng. Natural","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.06814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

大型语言模型的预训练通常需要大量的计算和数据资源。经常使用的web资源(如Common Crawl)可能包含足够的噪声,使这种预训练不太理想。在这项工作中,我们对西班牙语版本mC4的不同采样方法进行了实验,并提出了一种新的以数据为中心的技术,我们将其命名为$\textit{perplexity sampling}$,该技术可以在大约一半的步骤中使用五分之一的数据对语言模型进行预训练。由此产生的模型可以与当前最先进的模型相媲美,甚至可以在某些任务中获得更好的结果。我们的工作证明了变形金刚的多功能性,并为小团队在有限的预算下训练他们的模型铺平了道路。我们的模型可以在$\href{https://huggingface.co/bertin-project}{URL}$上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling
The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pre-training sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name $\textit{perplexity sampling}$ that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget. Our models are available at this $\href{https://huggingface.co/bertin-project}{URL}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信