Darryl Hond, H. Asgari, Daniel Jeffery, Mike Newman
{"title":"基于数据集不相似性度量的深度学习分类器验证集成过程","authors":"Darryl Hond, H. Asgari, Daniel Jeffery, Mike Newman","doi":"10.4018/ijaiml.289536","DOIUrl":null,"url":null,"abstract":"The specification and verification of algorithms is vital for safety-critical autonomous systems which incorporate deep learning elements. We propose an integrated process for verifying artificial neural network (ANN) classifiers. This process consists of an off-line verification and an on-line performance prediction phase. The process is intended to verify ANN classifier generalisation performance, and to this end makes use of dataset dissimilarity measures. We introduce a novel measure for quantifying the dissimilarity between the dataset used to train a classification algorithm, and the test dataset used to evaluate and verify classifier performance. A system-level requirement could specify the permitted form of the functional relationship between classifier performance and a dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, obtained using publicly available datasets, suggest that the measures have relevance to real-world practice for both quantifying dataset dissimilarity, and specifying and verifying classifier performance.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Integrated Process for Verifying Deep Learning Classifiers Using Dataset Dissimilarity Measures\",\"authors\":\"Darryl Hond, H. Asgari, Daniel Jeffery, Mike Newman\",\"doi\":\"10.4018/ijaiml.289536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The specification and verification of algorithms is vital for safety-critical autonomous systems which incorporate deep learning elements. We propose an integrated process for verifying artificial neural network (ANN) classifiers. This process consists of an off-line verification and an on-line performance prediction phase. The process is intended to verify ANN classifier generalisation performance, and to this end makes use of dataset dissimilarity measures. We introduce a novel measure for quantifying the dissimilarity between the dataset used to train a classification algorithm, and the test dataset used to evaluate and verify classifier performance. A system-level requirement could specify the permitted form of the functional relationship between classifier performance and a dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, obtained using publicly available datasets, suggest that the measures have relevance to real-world practice for both quantifying dataset dissimilarity, and specifying and verifying classifier performance.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.289536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.289536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Integrated Process for Verifying Deep Learning Classifiers Using Dataset Dissimilarity Measures
The specification and verification of algorithms is vital for safety-critical autonomous systems which incorporate deep learning elements. We propose an integrated process for verifying artificial neural network (ANN) classifiers. This process consists of an off-line verification and an on-line performance prediction phase. The process is intended to verify ANN classifier generalisation performance, and to this end makes use of dataset dissimilarity measures. We introduce a novel measure for quantifying the dissimilarity between the dataset used to train a classification algorithm, and the test dataset used to evaluate and verify classifier performance. A system-level requirement could specify the permitted form of the functional relationship between classifier performance and a dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, obtained using publicly available datasets, suggest that the measures have relevance to real-world practice for both quantifying dataset dissimilarity, and specifying and verifying classifier performance.