基于忆阻器的输入信号含噪声和脉冲干扰的人工神经网络的运算精度研究

S. Danilin, S. Shchanikov
{"title":"基于忆阻器的输入信号含噪声和脉冲干扰的人工神经网络的运算精度研究","authors":"S. Danilin, S. Shchanikov","doi":"10.1109/DYNAMICS.2016.7818997","DOIUrl":null,"url":null,"abstract":"This article looks at the issues of calculating the operation accuracy of memristor-based hardware when there are some pulse interference (ε-polluted interference with additive white Gaussian noise) in a square signal. Through the example of operation of the memristor-based artificial neural network synapse, you can see that this type of interference in an input signal of memristor-based hardware causes additional error in the values of their output parameters. It was revealed that there is correlation dependence between the values of parameters of noise components in an input signal of a memristor-based artificial neural network (noise and interference variance, an occurrence probability of pulse interference) and the value of synaptic weight.","PeriodicalId":293543,"journal":{"name":"2016 Dynamics of Systems, Mechanisms and Machines (Dynamics)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The research of operation accuracy of a memristor-based artificial neural network with an input signal containing noise and pulse interference\",\"authors\":\"S. Danilin, S. Shchanikov\",\"doi\":\"10.1109/DYNAMICS.2016.7818997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article looks at the issues of calculating the operation accuracy of memristor-based hardware when there are some pulse interference (ε-polluted interference with additive white Gaussian noise) in a square signal. Through the example of operation of the memristor-based artificial neural network synapse, you can see that this type of interference in an input signal of memristor-based hardware causes additional error in the values of their output parameters. It was revealed that there is correlation dependence between the values of parameters of noise components in an input signal of a memristor-based artificial neural network (noise and interference variance, an occurrence probability of pulse interference) and the value of synaptic weight.\",\"PeriodicalId\":293543,\"journal\":{\"name\":\"2016 Dynamics of Systems, Mechanisms and Machines (Dynamics)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Dynamics of Systems, Mechanisms and Machines (Dynamics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DYNAMICS.2016.7818997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Dynamics of Systems, Mechanisms and Machines (Dynamics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYNAMICS.2016.7818997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了在方波信号中存在脉冲干扰(ε污染干扰和加性高斯白噪声)时,基于忆阻器的硬件的运算精度计算问题。通过基于忆阻器的人工神经网络突触的运行实例可以看出,在基于忆阻器的硬件的输入信号中,这种类型的干扰会导致其输出参数的值产生额外的误差。研究发现,基于忆阻器的人工神经网络输入信号中噪声分量参数(噪声与干扰方差、脉冲干扰发生概率)与突触权值之间存在相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research of operation accuracy of a memristor-based artificial neural network with an input signal containing noise and pulse interference
This article looks at the issues of calculating the operation accuracy of memristor-based hardware when there are some pulse interference (ε-polluted interference with additive white Gaussian noise) in a square signal. Through the example of operation of the memristor-based artificial neural network synapse, you can see that this type of interference in an input signal of memristor-based hardware causes additional error in the values of their output parameters. It was revealed that there is correlation dependence between the values of parameters of noise components in an input signal of a memristor-based artificial neural network (noise and interference variance, an occurrence probability of pulse interference) and the value of synaptic weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信