K. Krish, Bharti Wadhwa, M. S. Iqbal, M. Mustafa Rafique, Ali R. Butt
{"title":"面向大数据处理的高效分层存储研究","authors":"K. Krish, Bharti Wadhwa, M. S. Iqbal, M. Mustafa Rafique, Ali R. Butt","doi":"10.1109/CCGrid.2016.61","DOIUrl":null,"url":null,"abstract":"A promising trend in storage management for big data frameworks, such as Hadoop and Spark, is the emergence of heterogeneous and hybrid storage systems that employ different types of storage devices, e.g. SSDs, RAMDisks, etc., alongside traditional HDDs. However, scheduling data accesses or requests to an appropriate storage device is non-trivial and depends on several factors such as data locality, device performance, and application compute and storage resources utilization. To this end, we present DUX, an application-attuned dynamic data management system for data processing frameworks, which aims to improve overall application I/O throughput by efficiently using SSDs only for workloads that are expected to benefit from them rather than the extant approach of storing a fraction of the overall workloads in SSDs. The novelty of DUX lies in profiling application performance on SSDs and HDDs, analyzing the resulting I/O behavior, and considering the available SSDs at runtime to dynamically place data in an appropriate storage tier. Evaluation of DUX with trace-driven simulations using synthetic Facebook workloads shows that even when using 5.5× fewer SSDs compared to a SSD-only solution, DUX incurs only a small (5%) performance overhead, and thus offers an affordable and efficient storage tier management.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"On Efficient Hierarchical Storage for Big Data Processing\",\"authors\":\"K. Krish, Bharti Wadhwa, M. S. Iqbal, M. Mustafa Rafique, Ali R. Butt\",\"doi\":\"10.1109/CCGrid.2016.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising trend in storage management for big data frameworks, such as Hadoop and Spark, is the emergence of heterogeneous and hybrid storage systems that employ different types of storage devices, e.g. SSDs, RAMDisks, etc., alongside traditional HDDs. However, scheduling data accesses or requests to an appropriate storage device is non-trivial and depends on several factors such as data locality, device performance, and application compute and storage resources utilization. To this end, we present DUX, an application-attuned dynamic data management system for data processing frameworks, which aims to improve overall application I/O throughput by efficiently using SSDs only for workloads that are expected to benefit from them rather than the extant approach of storing a fraction of the overall workloads in SSDs. The novelty of DUX lies in profiling application performance on SSDs and HDDs, analyzing the resulting I/O behavior, and considering the available SSDs at runtime to dynamically place data in an appropriate storage tier. Evaluation of DUX with trace-driven simulations using synthetic Facebook workloads shows that even when using 5.5× fewer SSDs compared to a SSD-only solution, DUX incurs only a small (5%) performance overhead, and thus offers an affordable and efficient storage tier management.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Efficient Hierarchical Storage for Big Data Processing
A promising trend in storage management for big data frameworks, such as Hadoop and Spark, is the emergence of heterogeneous and hybrid storage systems that employ different types of storage devices, e.g. SSDs, RAMDisks, etc., alongside traditional HDDs. However, scheduling data accesses or requests to an appropriate storage device is non-trivial and depends on several factors such as data locality, device performance, and application compute and storage resources utilization. To this end, we present DUX, an application-attuned dynamic data management system for data processing frameworks, which aims to improve overall application I/O throughput by efficiently using SSDs only for workloads that are expected to benefit from them rather than the extant approach of storing a fraction of the overall workloads in SSDs. The novelty of DUX lies in profiling application performance on SSDs and HDDs, analyzing the resulting I/O behavior, and considering the available SSDs at runtime to dynamically place data in an appropriate storage tier. Evaluation of DUX with trace-driven simulations using synthetic Facebook workloads shows that even when using 5.5× fewer SSDs compared to a SSD-only solution, DUX incurs only a small (5%) performance overhead, and thus offers an affordable and efficient storage tier management.