利用量子闪电搜索算法优化感应电机驱动速度控制器

J. Ali, M. A. Hannan, A. Mohamed
{"title":"利用量子闪电搜索算法优化感应电机驱动速度控制器","authors":"J. Ali, M. A. Hannan, A. Mohamed","doi":"10.1109/PECON.2016.7951615","DOIUrl":null,"url":null,"abstract":"This paper presents an improve proportional-integral-derivative (PID) controller design technique for controlling a three-phase induction motor (TIM) speed drive using quantum lightning search algorithm (QLSA). This proposed controller avoids the exhaustive conventional trial- and-error procedure for obtaining PID parameters. Objective function using in the proposed controller is mean absolute error (MAE) to enhance the TIM speed performance under sudden change of the speed and load conditions. The QLSA is used to improve two controller system PID and PI controllers in the TIM drive. Moreover, the QLSA algorithm comperes with three optimization algorithms, namely, lightning search algorithm (LSA), the backtracking search algorithm (BSA), the particle swarm optimization (PSO). Designed and validated the simulation model by using a MATLAB/Simulink environment. Results show that the QLSA-based PID and PI speed controller is achieved better results than the other optimization controllers through reduce of damping capability, enhance the transient response, minimize the MAE, root mean square error (RMSE) and standard division (SD) of the speed response.","PeriodicalId":259969,"journal":{"name":"2016 IEEE International Conference on Power and Energy (PECon)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimized speed controller for induction motor drive using quantum lightning search algorithm\",\"authors\":\"J. Ali, M. A. Hannan, A. Mohamed\",\"doi\":\"10.1109/PECON.2016.7951615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improve proportional-integral-derivative (PID) controller design technique for controlling a three-phase induction motor (TIM) speed drive using quantum lightning search algorithm (QLSA). This proposed controller avoids the exhaustive conventional trial- and-error procedure for obtaining PID parameters. Objective function using in the proposed controller is mean absolute error (MAE) to enhance the TIM speed performance under sudden change of the speed and load conditions. The QLSA is used to improve two controller system PID and PI controllers in the TIM drive. Moreover, the QLSA algorithm comperes with three optimization algorithms, namely, lightning search algorithm (LSA), the backtracking search algorithm (BSA), the particle swarm optimization (PSO). Designed and validated the simulation model by using a MATLAB/Simulink environment. Results show that the QLSA-based PID and PI speed controller is achieved better results than the other optimization controllers through reduce of damping capability, enhance the transient response, minimize the MAE, root mean square error (RMSE) and standard division (SD) of the speed response.\",\"PeriodicalId\":259969,\"journal\":{\"name\":\"2016 IEEE International Conference on Power and Energy (PECon)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Power and Energy (PECon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECON.2016.7951615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2016.7951615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种改进的比例-积分-导数(PID)控制器设计技术,用于利用量子闪电搜索算法(QLSA)控制三相感应电动机(TIM)速度驱动器。该控制器避免了获取PID参数的繁琐的常规试错过程。该控制器的目标函数是平均绝对误差(MAE),以提高在速度和负载突变条件下的TIM速度性能。QLSA用于改进TIM驱动器中的两个控制器系统PID和PI控制器。并与闪电搜索算法(LSA)、回溯搜索算法(BSA)、粒子群算法(PSO)三种优化算法进行了比较。利用MATLAB/Simulink环境设计并验证了仿真模型。结果表明,基于qlsa的PID和PI速度控制器通过降低阻尼能力,增强瞬态响应,最小化速度响应的MAE、均方根误差(RMSE)和标准除法(SD),取得了比其他优化控制器更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized speed controller for induction motor drive using quantum lightning search algorithm
This paper presents an improve proportional-integral-derivative (PID) controller design technique for controlling a three-phase induction motor (TIM) speed drive using quantum lightning search algorithm (QLSA). This proposed controller avoids the exhaustive conventional trial- and-error procedure for obtaining PID parameters. Objective function using in the proposed controller is mean absolute error (MAE) to enhance the TIM speed performance under sudden change of the speed and load conditions. The QLSA is used to improve two controller system PID and PI controllers in the TIM drive. Moreover, the QLSA algorithm comperes with three optimization algorithms, namely, lightning search algorithm (LSA), the backtracking search algorithm (BSA), the particle swarm optimization (PSO). Designed and validated the simulation model by using a MATLAB/Simulink environment. Results show that the QLSA-based PID and PI speed controller is achieved better results than the other optimization controllers through reduce of damping capability, enhance the transient response, minimize the MAE, root mean square error (RMSE) and standard division (SD) of the speed response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信