隐私保护数据再发布中的推理分析

Guan Wang, Zutao Zhu, Wenliang Du, Zhouxuan Teng
{"title":"隐私保护数据再发布中的推理分析","authors":"Guan Wang, Zutao Zhu, Wenliang Du, Zhouxuan Teng","doi":"10.1109/ICDM.2008.118","DOIUrl":null,"url":null,"abstract":"Privacy-Preserving Data Re-publishing (PPDR) deals with publishing microdata in dynamic scenarios. Due to privacy concerns, data must be disguised before being published. Research in privacy-preserving data publishing (PPDP) has proposed many such methods on static data. In PPDR, multiple appeared records can be used to infer private information of other records. Therefore, inference channels exist among different releases. To understand the privacy property of data re-publishing, we need to analyze the impact of these inference channels. Previous studies show such analysis when data are updated or disguised in special ways, however, no general method has been proposed. Using the Maximum Entropy Modeling method, we have developed a general solution. Our method can conduct inference analysis when data are arbitrarily updated or arbitrarily disguised using either generalization or bucketization, two most common data disguise methods in PPDR. Through analysis and experiments, we demonstrate the advantage and the effectiveness of our method.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Inference Analysis in Privacy-Preserving Data Re-publishing\",\"authors\":\"Guan Wang, Zutao Zhu, Wenliang Du, Zhouxuan Teng\",\"doi\":\"10.1109/ICDM.2008.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy-Preserving Data Re-publishing (PPDR) deals with publishing microdata in dynamic scenarios. Due to privacy concerns, data must be disguised before being published. Research in privacy-preserving data publishing (PPDP) has proposed many such methods on static data. In PPDR, multiple appeared records can be used to infer private information of other records. Therefore, inference channels exist among different releases. To understand the privacy property of data re-publishing, we need to analyze the impact of these inference channels. Previous studies show such analysis when data are updated or disguised in special ways, however, no general method has been proposed. Using the Maximum Entropy Modeling method, we have developed a general solution. Our method can conduct inference analysis when data are arbitrarily updated or arbitrarily disguised using either generalization or bucketization, two most common data disguise methods in PPDR. Through analysis and experiments, we demonstrate the advantage and the effectiveness of our method.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

隐私保护数据重发布(PPDR)处理动态场景下的微数据发布。出于隐私考虑,数据在发布前必须经过伪装。在隐私保护数据发布(PPDP)的研究中,针对静态数据提出了许多这样的方法。在PPDR中,多个出现的记录可以用来推断其他记录的私有信息。因此,不同版本之间存在推理通道。为了理解数据再发布的隐私属性,我们需要分析这些推断通道的影响。以往的研究表明,当数据以特殊的方式更新或伪装时,会出现这种分析,但没有提出通用的方法。利用最大熵建模方法,我们开发了一个通用的解决方案。我们的方法可以在数据被任意更新或任意伪装时进行推理分析,使用泛化或桶化这两种PPDR中最常见的数据伪装方法。通过分析和实验,证明了该方法的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference Analysis in Privacy-Preserving Data Re-publishing
Privacy-Preserving Data Re-publishing (PPDR) deals with publishing microdata in dynamic scenarios. Due to privacy concerns, data must be disguised before being published. Research in privacy-preserving data publishing (PPDP) has proposed many such methods on static data. In PPDR, multiple appeared records can be used to infer private information of other records. Therefore, inference channels exist among different releases. To understand the privacy property of data re-publishing, we need to analyze the impact of these inference channels. Previous studies show such analysis when data are updated or disguised in special ways, however, no general method has been proposed. Using the Maximum Entropy Modeling method, we have developed a general solution. Our method can conduct inference analysis when data are arbitrarily updated or arbitrarily disguised using either generalization or bucketization, two most common data disguise methods in PPDR. Through analysis and experiments, we demonstrate the advantage and the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信