Jason Koh, Kuo-Kuang Liang, Yiming Yang, Dezhi Hong, Yuvraj Agarwal, Rajesh E. Gupta
{"title":"交互式建筑元数据规范化","authors":"Jason Koh, Kuo-Kuang Liang, Yiming Yang, Dezhi Hong, Yuvraj Agarwal, Rajesh E. Gupta","doi":"10.1145/3360322.3360990","DOIUrl":null,"url":null,"abstract":"Having standardized metadata is the first step toward deploying smart building applications over heterogeneous buildings. Such a conversion process is highly manual because of different conventions in existing building metadata and diverse building configurations. Many machine learning methods have been attempted to ease the process by reducing the amount of experts' training examples and reusing the knowledge in different data sets. However, many of the end-users, such as building managers and commissioning practitioners, are unfamiliar with machine learning and programming interfaces. We implement and demonstrate a web-based graphical user interface whose workflow is designed based on a common programming interface, Plaster, for building metadata normalization. We implement three algorithms, Zodiac, BuildingAdapter, and Scrabble, though any new algorithms can be added. Users are instructed for proper actions with information visualization at each step to easily complete the procedure. The service is freely available at https://plaster.ucsd.edu.","PeriodicalId":128826,"journal":{"name":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interactive Building Metadata Normalization\",\"authors\":\"Jason Koh, Kuo-Kuang Liang, Yiming Yang, Dezhi Hong, Yuvraj Agarwal, Rajesh E. Gupta\",\"doi\":\"10.1145/3360322.3360990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Having standardized metadata is the first step toward deploying smart building applications over heterogeneous buildings. Such a conversion process is highly manual because of different conventions in existing building metadata and diverse building configurations. Many machine learning methods have been attempted to ease the process by reducing the amount of experts' training examples and reusing the knowledge in different data sets. However, many of the end-users, such as building managers and commissioning practitioners, are unfamiliar with machine learning and programming interfaces. We implement and demonstrate a web-based graphical user interface whose workflow is designed based on a common programming interface, Plaster, for building metadata normalization. We implement three algorithms, Zodiac, BuildingAdapter, and Scrabble, though any new algorithms can be added. Users are instructed for proper actions with information visualization at each step to easily complete the procedure. The service is freely available at https://plaster.ucsd.edu.\",\"PeriodicalId\":128826,\"journal\":{\"name\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3360322.3360990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360322.3360990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Having standardized metadata is the first step toward deploying smart building applications over heterogeneous buildings. Such a conversion process is highly manual because of different conventions in existing building metadata and diverse building configurations. Many machine learning methods have been attempted to ease the process by reducing the amount of experts' training examples and reusing the knowledge in different data sets. However, many of the end-users, such as building managers and commissioning practitioners, are unfamiliar with machine learning and programming interfaces. We implement and demonstrate a web-based graphical user interface whose workflow is designed based on a common programming interface, Plaster, for building metadata normalization. We implement three algorithms, Zodiac, BuildingAdapter, and Scrabble, though any new algorithms can be added. Users are instructed for proper actions with information visualization at each step to easily complete the procedure. The service is freely available at https://plaster.ucsd.edu.