{"title":"网络冗余:冷却网络的关键设计因素","authors":"Reza Pejman, A. Najafi","doi":"10.1115/detc2020-22107","DOIUrl":null,"url":null,"abstract":"\n Microvascular composite offers a variety of multi-functionality based on the choice of fluid flowing through the embedded microchannels. The design of the microchannel network in microvascular composites is quite challenging. Indeed, the design is often expected to have high cooling efficiency, satisfy the manufacturing and operating constraints, and also have redundancy to increase the temperature uniformity and alleviate the destructive effects of potential microchannel blockage. In this study, we present a design optimization framework to satisfy these requirements. We use the Hybrid Topology/Shape (HyTopS) optimization scheme to design a redundant blockage-tolerant cooling network. In this method, the optimizer can change the topology of the design during the shape optimization process. Being able to modify the topology of the network enables the optimizer to provide network redundancy to effectively optimize the design for blockage tolerance. We also solve several numerical examples to show the unique features of the proposed method.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network Redundancy: A Key Design Factor for Cooling Networks\",\"authors\":\"Reza Pejman, A. Najafi\",\"doi\":\"10.1115/detc2020-22107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Microvascular composite offers a variety of multi-functionality based on the choice of fluid flowing through the embedded microchannels. The design of the microchannel network in microvascular composites is quite challenging. Indeed, the design is often expected to have high cooling efficiency, satisfy the manufacturing and operating constraints, and also have redundancy to increase the temperature uniformity and alleviate the destructive effects of potential microchannel blockage. In this study, we present a design optimization framework to satisfy these requirements. We use the Hybrid Topology/Shape (HyTopS) optimization scheme to design a redundant blockage-tolerant cooling network. In this method, the optimizer can change the topology of the design during the shape optimization process. Being able to modify the topology of the network enables the optimizer to provide network redundancy to effectively optimize the design for blockage tolerance. We also solve several numerical examples to show the unique features of the proposed method.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Redundancy: A Key Design Factor for Cooling Networks
Microvascular composite offers a variety of multi-functionality based on the choice of fluid flowing through the embedded microchannels. The design of the microchannel network in microvascular composites is quite challenging. Indeed, the design is often expected to have high cooling efficiency, satisfy the manufacturing and operating constraints, and also have redundancy to increase the temperature uniformity and alleviate the destructive effects of potential microchannel blockage. In this study, we present a design optimization framework to satisfy these requirements. We use the Hybrid Topology/Shape (HyTopS) optimization scheme to design a redundant blockage-tolerant cooling network. In this method, the optimizer can change the topology of the design during the shape optimization process. Being able to modify the topology of the network enables the optimizer to provide network redundancy to effectively optimize the design for blockage tolerance. We also solve several numerical examples to show the unique features of the proposed method.