Euler-Poincaré特性以便poliedros𝑛-tóricos

Luciene Arantes, W. Pedrochi, Rodrigo Martins
{"title":"Euler-Poincaré特性以便poliedros𝑛-tóricos","authors":"Luciene Arantes, W. Pedrochi, Rodrigo Martins","doi":"10.21711/2319023x2019/pmo717","DOIUrl":null,"url":null,"abstract":"The Euler-Poincaré Characteristic is a well-known topological invariant. The computation for compact surfaces depends on a highly refined topological tools, however in the case of convex polyhedra this invariant is constant equal to two and it follows, because convex polyhedra are homeomorphic to a sphere, from a simple verification of the formula which relates the number of vertices V, the number of edges A and the number of faces F of a polyhedron, more precisely, V − A + F = 2 (Euler’s Formula). In this work we present a proof, using only finite induction, for the computation this invariant taking into account, however, only a class of non-convex polyhedra, presented in a specific way, here called n-toric polyhedra, which are homeomorphic to an n-torus.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Característica de Euler-Poincaré para poliedros 𝑛-tóricos\",\"authors\":\"Luciene Arantes, W. Pedrochi, Rodrigo Martins\",\"doi\":\"10.21711/2319023x2019/pmo717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euler-Poincaré Characteristic is a well-known topological invariant. The computation for compact surfaces depends on a highly refined topological tools, however in the case of convex polyhedra this invariant is constant equal to two and it follows, because convex polyhedra are homeomorphic to a sphere, from a simple verification of the formula which relates the number of vertices V, the number of edges A and the number of faces F of a polyhedron, more precisely, V − A + F = 2 (Euler’s Formula). In this work we present a proof, using only finite induction, for the computation this invariant taking into account, however, only a class of non-convex polyhedra, presented in a specific way, here called n-toric polyhedra, which are homeomorphic to an n-torus.\",\"PeriodicalId\":274953,\"journal\":{\"name\":\"Revista Professor de Matemática On line\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Professor de Matemática On line\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21711/2319023x2019/pmo717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2019/pmo717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧拉-庞卡罗特征是一个众所周知的拓扑不变量。紧致曲面的计算依赖于高度精细的拓扑工具,然而在凸多面体的情况下,这个不变量等于2,因为凸多面体与球体是同胚的,从一个简单的公式验证,它与多面体的顶点数V、边数a和面数F有关,更准确地说,V−a + F = 2(欧拉公式)。在这项工作中,我们只用有限归纳法证明了这个不变量的计算,然而,只有一类非凸多面体,以一种特定的方式呈现,这里称为n环面多面体,它们与n环面同胚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Característica de Euler-Poincaré para poliedros 𝑛-tóricos
The Euler-Poincaré Characteristic is a well-known topological invariant. The computation for compact surfaces depends on a highly refined topological tools, however in the case of convex polyhedra this invariant is constant equal to two and it follows, because convex polyhedra are homeomorphic to a sphere, from a simple verification of the formula which relates the number of vertices V, the number of edges A and the number of faces F of a polyhedron, more precisely, V − A + F = 2 (Euler’s Formula). In this work we present a proof, using only finite induction, for the computation this invariant taking into account, however, only a class of non-convex polyhedra, presented in a specific way, here called n-toric polyhedra, which are homeomorphic to an n-torus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信