M. Lajolo, M. Lazarescu, A. Sangiovanni-Vincentelli
{"title":"一种基于编译的软硬件联合仿真软件估计方案","authors":"M. Lajolo, M. Lazarescu, A. Sangiovanni-Vincentelli","doi":"10.1145/301177.301493","DOIUrl":null,"url":null,"abstract":"High-level cost and performance estimation, coupled with a fast hardware/software co-simulation framework, is a key enabler to a fast embedded system design cycle. Unfortunately, the problem of deriving such estimates without a detailed implementation available is very difficult. In this paper we focus on embedded software performance estimation. Current approaches use either behavioral simulation with (often manual) timing annotations, or a clock cycle-accurate model of instruction execution (e.g., an instruction set simulator). The former provides greater flexibility (no need to perform a detailed design) and high simulation speed, but cannot easily consider effects such as compiler optimization and processor architecture. The latter provides high accuracy, but requires a more detailed implementation model, and is much slower in general. We hence developed a hybrid approach, that incorporates some aspects of both. It provides a flexible and fast simulation platform, considering also compilation issues and processor features. The key idea is to use the GNU-C compiler (GCC) to generate \"assembler-level\" C code. This code can be annotated with timing information, and used as a very precise, yet fast, software simulation model. We report some experimental results that show the effectiveness of our approach, and we propose some future improvements.","PeriodicalId":344739,"journal":{"name":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"A compilation-based software estimation scheme for hardware/software co-simulation\",\"authors\":\"M. Lajolo, M. Lazarescu, A. Sangiovanni-Vincentelli\",\"doi\":\"10.1145/301177.301493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-level cost and performance estimation, coupled with a fast hardware/software co-simulation framework, is a key enabler to a fast embedded system design cycle. Unfortunately, the problem of deriving such estimates without a detailed implementation available is very difficult. In this paper we focus on embedded software performance estimation. Current approaches use either behavioral simulation with (often manual) timing annotations, or a clock cycle-accurate model of instruction execution (e.g., an instruction set simulator). The former provides greater flexibility (no need to perform a detailed design) and high simulation speed, but cannot easily consider effects such as compiler optimization and processor architecture. The latter provides high accuracy, but requires a more detailed implementation model, and is much slower in general. We hence developed a hybrid approach, that incorporates some aspects of both. It provides a flexible and fast simulation platform, considering also compilation issues and processor features. The key idea is to use the GNU-C compiler (GCC) to generate \\\"assembler-level\\\" C code. This code can be annotated with timing information, and used as a very precise, yet fast, software simulation model. We report some experimental results that show the effectiveness of our approach, and we propose some future improvements.\",\"PeriodicalId\":344739,\"journal\":{\"name\":\"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/301177.301493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301177.301493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compilation-based software estimation scheme for hardware/software co-simulation
High-level cost and performance estimation, coupled with a fast hardware/software co-simulation framework, is a key enabler to a fast embedded system design cycle. Unfortunately, the problem of deriving such estimates without a detailed implementation available is very difficult. In this paper we focus on embedded software performance estimation. Current approaches use either behavioral simulation with (often manual) timing annotations, or a clock cycle-accurate model of instruction execution (e.g., an instruction set simulator). The former provides greater flexibility (no need to perform a detailed design) and high simulation speed, but cannot easily consider effects such as compiler optimization and processor architecture. The latter provides high accuracy, but requires a more detailed implementation model, and is much slower in general. We hence developed a hybrid approach, that incorporates some aspects of both. It provides a flexible and fast simulation platform, considering also compilation issues and processor features. The key idea is to use the GNU-C compiler (GCC) to generate "assembler-level" C code. This code can be annotated with timing information, and used as a very precise, yet fast, software simulation model. We report some experimental results that show the effectiveness of our approach, and we propose some future improvements.