{"title":"关于Davenport-Schinzel序列的最大长度","authors":"Martin Klazar","doi":"10.1090/dimacs/049/11","DOIUrl":null,"url":null,"abstract":"The quantity N5(n) is the maximum length of a finite sequence over n symbols which has no two identical consecutive elements and no 5-term alternating subsequence. Improving the constant factor in the previous bounds of Hart and Sharir, and of Sharir and Agarwal, we prove that N5(n) < 2nα(n) +O(nα(n) ), where α(n) is the inverse to the Ackermann function. Quantities Ns(n) can be generalized and any finite sequence, not just an alternating one, can be assigned extremal function. We present a sequence with no 5-term alternating subsequence and with an extremal function n2.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the maximum lengths of Davenport-Schinzel sequences\",\"authors\":\"Martin Klazar\",\"doi\":\"10.1090/dimacs/049/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantity N5(n) is the maximum length of a finite sequence over n symbols which has no two identical consecutive elements and no 5-term alternating subsequence. Improving the constant factor in the previous bounds of Hart and Sharir, and of Sharir and Agarwal, we prove that N5(n) < 2nα(n) +O(nα(n) ), where α(n) is the inverse to the Ackermann function. Quantities Ns(n) can be generalized and any finite sequence, not just an alternating one, can be assigned extremal function. We present a sequence with no 5-term alternating subsequence and with an extremal function n2.\",\"PeriodicalId\":144845,\"journal\":{\"name\":\"Contemporary Trends in Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Trends in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/049/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the maximum lengths of Davenport-Schinzel sequences
The quantity N5(n) is the maximum length of a finite sequence over n symbols which has no two identical consecutive elements and no 5-term alternating subsequence. Improving the constant factor in the previous bounds of Hart and Sharir, and of Sharir and Agarwal, we prove that N5(n) < 2nα(n) +O(nα(n) ), where α(n) is the inverse to the Ackermann function. Quantities Ns(n) can be generalized and any finite sequence, not just an alternating one, can be assigned extremal function. We present a sequence with no 5-term alternating subsequence and with an extremal function n2.