基于骨干U-Net的MLO乳房x线图像胸肌区域分割

R. Ö. Dogan, H. Ture, T. Kayikçioglu
{"title":"基于骨干U-Net的MLO乳房x线图像胸肌区域分割","authors":"R. Ö. Dogan, H. Ture, T. Kayikçioglu","doi":"10.1109/SIU55565.2022.9864865","DOIUrl":null,"url":null,"abstract":"The pectoral muscle region on MLO mammography images appears prominently similar to suspicious areas. For this reason, Computer-Aided Detection (CAD) systems remove this region to reduce false-positive rates in the mass detection process. In some cases, the pectoral muscle region is exposed to distortions due to the superposition effects caused by the mammography technique. As a result, segmentation error rates of the pectoral muscle region, whose characteristic features are deteriorated, appear. In this study, a method to identify impaired pectoral muscle regions with MobileNetV2 backboned U-Net Deep Learning method is proposed. The proposed method was tested on 84 and 201 mammography images taken from both MIAS and InBreast databases and segmented with 1.81% and 1.92% false-negative (FN) and 0.25% and 0.37% false positive (FP) rates, respectively. Particularly for distorted pectoral muscle regions, the proposed method has been shown to outperform some pioneering studies in this area.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Pectoral Muscle Region in MLO Mammography Images by Backboned U-Net\",\"authors\":\"R. Ö. Dogan, H. Ture, T. Kayikçioglu\",\"doi\":\"10.1109/SIU55565.2022.9864865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pectoral muscle region on MLO mammography images appears prominently similar to suspicious areas. For this reason, Computer-Aided Detection (CAD) systems remove this region to reduce false-positive rates in the mass detection process. In some cases, the pectoral muscle region is exposed to distortions due to the superposition effects caused by the mammography technique. As a result, segmentation error rates of the pectoral muscle region, whose characteristic features are deteriorated, appear. In this study, a method to identify impaired pectoral muscle regions with MobileNetV2 backboned U-Net Deep Learning method is proposed. The proposed method was tested on 84 and 201 mammography images taken from both MIAS and InBreast databases and segmented with 1.81% and 1.92% false-negative (FN) and 0.25% and 0.37% false positive (FP) rates, respectively. Particularly for distorted pectoral muscle regions, the proposed method has been shown to outperform some pioneering studies in this area.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MLO乳房x线摄影图像上的胸肌区域与可疑区域明显相似。因此,计算机辅助检测(CAD)系统去除该区域以降低大量检测过程中的假阳性率。在某些情况下,由于乳房x线摄影技术引起的叠加效应,胸肌区域暴露于扭曲。结果表明,胸肌区域的分割错误率较高,其特征特征较差。本研究提出了一种基于MobileNetV2骨干网U-Net深度学习方法的胸肌损伤区域识别方法。对来自MIAS和InBreast数据库的84张和201张乳房x线摄影图像进行了测试,并分别以1.81%和1.92%的假阴性(FN)和0.25%和0.37%的假阳性(FP)率进行了分割。特别是对于扭曲的胸肌区域,所提出的方法已被证明优于该领域的一些开创性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Pectoral Muscle Region in MLO Mammography Images by Backboned U-Net
The pectoral muscle region on MLO mammography images appears prominently similar to suspicious areas. For this reason, Computer-Aided Detection (CAD) systems remove this region to reduce false-positive rates in the mass detection process. In some cases, the pectoral muscle region is exposed to distortions due to the superposition effects caused by the mammography technique. As a result, segmentation error rates of the pectoral muscle region, whose characteristic features are deteriorated, appear. In this study, a method to identify impaired pectoral muscle regions with MobileNetV2 backboned U-Net Deep Learning method is proposed. The proposed method was tested on 84 and 201 mammography images taken from both MIAS and InBreast databases and segmented with 1.81% and 1.92% false-negative (FN) and 0.25% and 0.37% false positive (FP) rates, respectively. Particularly for distorted pectoral muscle regions, the proposed method has been shown to outperform some pioneering studies in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信