移动边缘计算中并行深度学习应用的任务合并与调度

Xin Long, W. Jigang, Yalan Wu, Long Chen
{"title":"移动边缘计算中并行深度学习应用的任务合并与调度","authors":"Xin Long, W. Jigang, Yalan Wu, Long Chen","doi":"10.1109/PDCAT46702.2019.00022","DOIUrl":null,"url":null,"abstract":"Mobile edge computing enables the execution of compute-intensive applications, e.g. deep learning applications, on the end devices with limited computation resources. However, the deep learning applications bring the performance bottleneck in mobile edge computing, due to the movements of a large amount of data incurred by the large number of layers and millions of weights. In this paper, the computing model for parallel deep learning applications in mobile edge computing is proposed, by considering the occupancy allocation of processors, cost of context switch, and multi-processors in edge server and remote cloud. The problem of minimizing the completion time for deep learning applications is formulated, and the NP-hardness of the problem is proved. To solve the problem, an integrated algorithm by merging and scheduling is proposed. Moreover, a real-world distributed platform is developed for evaluating the proposed algorithm. Experimental results show that, the completion time of deep learning application for the proposed algorithm is decreased by 63% and 75%, respectively, without extra control costs, compared with the existing algorithms.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Task Merging and Scheduling for Parallel Deep Learning Applications in Mobile Edge Computing\",\"authors\":\"Xin Long, W. Jigang, Yalan Wu, Long Chen\",\"doi\":\"10.1109/PDCAT46702.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing enables the execution of compute-intensive applications, e.g. deep learning applications, on the end devices with limited computation resources. However, the deep learning applications bring the performance bottleneck in mobile edge computing, due to the movements of a large amount of data incurred by the large number of layers and millions of weights. In this paper, the computing model for parallel deep learning applications in mobile edge computing is proposed, by considering the occupancy allocation of processors, cost of context switch, and multi-processors in edge server and remote cloud. The problem of minimizing the completion time for deep learning applications is formulated, and the NP-hardness of the problem is proved. To solve the problem, an integrated algorithm by merging and scheduling is proposed. Moreover, a real-world distributed platform is developed for evaluating the proposed algorithm. Experimental results show that, the completion time of deep learning application for the proposed algorithm is decreased by 63% and 75%, respectively, without extra control costs, compared with the existing algorithms.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

移动边缘计算能够在计算资源有限的终端设备上执行计算密集型应用程序,例如深度学习应用程序。然而,深度学习应用带来了移动边缘计算的性能瓶颈,因为大量的层数和数以百万计的权重导致了大量数据的移动。本文通过考虑处理器占用分配、上下文切换成本以及边缘服务器和远程云中的多处理器,提出了移动边缘计算中并行深度学习应用的计算模型。提出了深度学习应用的最小化完成时间问题,并证明了该问题的np -硬度。为了解决这一问题,提出了一种合并调度的综合算法。此外,还开发了一个真实的分布式平台来评估所提出的算法。实验结果表明,与现有算法相比,该算法在不增加控制成本的情况下,深度学习应用的完成时间分别缩短了63%和75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Merging and Scheduling for Parallel Deep Learning Applications in Mobile Edge Computing
Mobile edge computing enables the execution of compute-intensive applications, e.g. deep learning applications, on the end devices with limited computation resources. However, the deep learning applications bring the performance bottleneck in mobile edge computing, due to the movements of a large amount of data incurred by the large number of layers and millions of weights. In this paper, the computing model for parallel deep learning applications in mobile edge computing is proposed, by considering the occupancy allocation of processors, cost of context switch, and multi-processors in edge server and remote cloud. The problem of minimizing the completion time for deep learning applications is formulated, and the NP-hardness of the problem is proved. To solve the problem, an integrated algorithm by merging and scheduling is proposed. Moreover, a real-world distributed platform is developed for evaluating the proposed algorithm. Experimental results show that, the completion time of deep learning application for the proposed algorithm is decreased by 63% and 75%, respectively, without extra control costs, compared with the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信