MultiANet:用于离焦模糊检测的多注意力网络

Zeyu Jiang, Xun Xu, Chao Zhang, Ce Zhu
{"title":"MultiANet:用于离焦模糊检测的多注意力网络","authors":"Zeyu Jiang, Xun Xu, Chao Zhang, Ce Zhu","doi":"10.1109/MMSP48831.2020.9287072","DOIUrl":null,"url":null,"abstract":"Defocus blur detection is a challenging task because of obscure homogenous regions and interferences of background clutter. Most existing deep learning-based methods mainly focus on building wider or deeper network to capture multi-level features, neglecting to extract the feature relationships of intermediate layers, thus hindering the discriminative ability of network. Moreover, fusing features at different levels have been demonstrated to be effective. However, direct integrating without distinction is not optimal because low-level features focus on fine details only and could be distracted by background clutters. To address these issues, we propose the Multi-Attention Network for stronger discriminative learning and spatial guided low-level feature learning. Specifically, a channel-wise attention module is applied to both high-level and low-level feature maps to capture channel-wise global dependencies. In addition, a spatial attention module is employed to low-level features maps to emphasize effective detailed information. Experimental results show the performance of our network is superior to the state-of-the-art algorithms.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MultiANet: a Multi-Attention Network for Defocus Blur Detection\",\"authors\":\"Zeyu Jiang, Xun Xu, Chao Zhang, Ce Zhu\",\"doi\":\"10.1109/MMSP48831.2020.9287072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defocus blur detection is a challenging task because of obscure homogenous regions and interferences of background clutter. Most existing deep learning-based methods mainly focus on building wider or deeper network to capture multi-level features, neglecting to extract the feature relationships of intermediate layers, thus hindering the discriminative ability of network. Moreover, fusing features at different levels have been demonstrated to be effective. However, direct integrating without distinction is not optimal because low-level features focus on fine details only and could be distracted by background clutters. To address these issues, we propose the Multi-Attention Network for stronger discriminative learning and spatial guided low-level feature learning. Specifically, a channel-wise attention module is applied to both high-level and low-level feature maps to capture channel-wise global dependencies. In addition, a spatial attention module is employed to low-level features maps to emphasize effective detailed information. Experimental results show the performance of our network is superior to the state-of-the-art algorithms.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

散焦模糊检测是一项具有挑战性的任务,主要是由于模糊的均匀区域和背景杂波的干扰。现有的基于深度学习的方法大多侧重于构建更宽或更深的网络来捕获多层次特征,忽略了提取中间层的特征关系,从而阻碍了网络的判别能力。此外,不同层次的特征融合已被证明是有效的。然而,不加区分的直接集成并不是最优的,因为低级特征只关注细节,可能会被背景杂乱分散注意力。为了解决这些问题,我们提出了多注意网络来进行更强的判别学习和空间引导的低级特征学习。具体来说,一个channel-wise attention模块被应用于高级和低级特征映射,以捕获channel-wise全局依赖关系。此外,对底层地物图采用空间注意模块,强调有效的细节信息。实验结果表明,该网络的性能优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MultiANet: a Multi-Attention Network for Defocus Blur Detection
Defocus blur detection is a challenging task because of obscure homogenous regions and interferences of background clutter. Most existing deep learning-based methods mainly focus on building wider or deeper network to capture multi-level features, neglecting to extract the feature relationships of intermediate layers, thus hindering the discriminative ability of network. Moreover, fusing features at different levels have been demonstrated to be effective. However, direct integrating without distinction is not optimal because low-level features focus on fine details only and could be distracted by background clutters. To address these issues, we propose the Multi-Attention Network for stronger discriminative learning and spatial guided low-level feature learning. Specifically, a channel-wise attention module is applied to both high-level and low-level feature maps to capture channel-wise global dependencies. In addition, a spatial attention module is employed to low-level features maps to emphasize effective detailed information. Experimental results show the performance of our network is superior to the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信