差异风险保费

Liuren Wu, P. Carr
{"title":"差异风险保费","authors":"Liuren Wu, P. Carr","doi":"10.2139/ssrn.577222","DOIUrl":null,"url":null,"abstract":"We propose a direct and robust method for quantifying the variance risk premium on financial assets. We theoretically and numerically show that the risk-neutral expected value of the return variance, also known as the variance swap rate, is well approximated by the value of a particular portfolio of options. Ignoring the small approximation error, the difference between the realized variance and this synthetic variance swap rate quantifies the variance risk premium. Using a large options data set, we synthesize variance swap rates and investigate the historical behavior of variance risk premia on five stock indexes and 35 individual stocks.","PeriodicalId":433580,"journal":{"name":"Baruch: Finance (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Variance Risk Premia\",\"authors\":\"Liuren Wu, P. Carr\",\"doi\":\"10.2139/ssrn.577222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a direct and robust method for quantifying the variance risk premium on financial assets. We theoretically and numerically show that the risk-neutral expected value of the return variance, also known as the variance swap rate, is well approximated by the value of a particular portfolio of options. Ignoring the small approximation error, the difference between the realized variance and this synthetic variance swap rate quantifies the variance risk premium. Using a large options data set, we synthesize variance swap rates and investigate the historical behavior of variance risk premia on five stock indexes and 35 individual stocks.\",\"PeriodicalId\":433580,\"journal\":{\"name\":\"Baruch: Finance (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baruch: Finance (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.577222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baruch: Finance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.577222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 194

摘要

我们提出了一种直接且稳健的方法来量化金融资产的方差风险溢价。我们从理论上和数值上证明了收益方差的风险中性期望值(也称为方差掉期率)可以很好地近似于特定期权组合的价值。忽略小的近似误差,实际方差与该综合方差互换率之间的差量化了方差风险溢价。利用一个大型期权数据集,综合方差掉期率,研究了5个股票指数和35只个股的方差风险溢价的历史行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance Risk Premia
We propose a direct and robust method for quantifying the variance risk premium on financial assets. We theoretically and numerically show that the risk-neutral expected value of the return variance, also known as the variance swap rate, is well approximated by the value of a particular portfolio of options. Ignoring the small approximation error, the difference between the realized variance and this synthetic variance swap rate quantifies the variance risk premium. Using a large options data set, we synthesize variance swap rates and investigate the historical behavior of variance risk premia on five stock indexes and 35 individual stocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信