Bellman-Ford算法的随机加速

Michael J. Bannister, D. Eppstein
{"title":"Bellman-Ford算法的随机加速","authors":"Michael J. Bannister, D. Eppstein","doi":"10.1137/1.9781611973020.6","DOIUrl":null,"url":null,"abstract":"We describe a variant of the Bellman--Ford algorithm for single-source shortest paths in graphs with negative edges but no negative cycles that randomly permutes the vertices and uses this randomized order to process the vertices within each pass of the algorithm. The modification reduces the worst-case expected number of relaxation steps of the algorithm, compared to the previously-best variant by Yen (1970), by a factor of 2/3 with high probability. We also use our high probability bound to add negative cycle detection to the randomized algorithm.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Randomized Speedup of the Bellman-Ford Algorithm\",\"authors\":\"Michael J. Bannister, D. Eppstein\",\"doi\":\"10.1137/1.9781611973020.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a variant of the Bellman--Ford algorithm for single-source shortest paths in graphs with negative edges but no negative cycles that randomly permutes the vertices and uses this randomized order to process the vertices within each pass of the algorithm. The modification reduces the worst-case expected number of relaxation steps of the algorithm, compared to the previously-best variant by Yen (1970), by a factor of 2/3 with high probability. We also use our high probability bound to add negative cycle detection to the randomized algorithm.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973020.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973020.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

我们描述了Bellman- Ford算法的一种变体,用于具有负边但没有负循环的图中的单源最短路径,该算法随机排列顶点,并使用这种随机顺序在算法的每次传递中处理顶点。与Yen(1970)先前的最佳变体相比,该修改高概率地将算法的最坏情况预期松弛步骤数减少了2/3。我们还利用高概率界在随机化算法中加入了负循环检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Speedup of the Bellman-Ford Algorithm
We describe a variant of the Bellman--Ford algorithm for single-source shortest paths in graphs with negative edges but no negative cycles that randomly permutes the vertices and uses this randomized order to process the vertices within each pass of the algorithm. The modification reduces the worst-case expected number of relaxation steps of the algorithm, compared to the previously-best variant by Yen (1970), by a factor of 2/3 with high probability. We also use our high probability bound to add negative cycle detection to the randomized algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信