使用泰勒模型严格集成流和ode

K. Makino, M. Berz
{"title":"使用泰勒模型严格集成流和ode","authors":"K. Makino, M. Berz","doi":"10.1145/1577190.1577206","DOIUrl":null,"url":null,"abstract":"Taylor models combine the advantages of numerical methods and algebraic approaches of efficiency, tightly controlled recourses, and the ability to handle very complex problems with the advantages of symbolic approaches, in particularly the ability to be rigorous and to allow the treatment of functional dependencies instead of merely points. The resulting differential algebraic calculus involving an algebra with differentiation and integration is particularly amenable for the study of ODEs and PDEs based on fixed point problems from functional analysis. We describe the development of rigorous tools to determine enclosures of flows of general nonlinear differential equations based on Picard iterations. Particular emphasis is placed on the development of methods that have favorable long term stability, which is achieved using suitable preconditioning and other methods. Applications of the methods are presented, including determinations of rigorous enclosures of flows of ODEs in the theory of chaotic dynamical systems.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Rigorous integration of flows and ODEs using taylor models\",\"authors\":\"K. Makino, M. Berz\",\"doi\":\"10.1145/1577190.1577206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taylor models combine the advantages of numerical methods and algebraic approaches of efficiency, tightly controlled recourses, and the ability to handle very complex problems with the advantages of symbolic approaches, in particularly the ability to be rigorous and to allow the treatment of functional dependencies instead of merely points. The resulting differential algebraic calculus involving an algebra with differentiation and integration is particularly amenable for the study of ODEs and PDEs based on fixed point problems from functional analysis. We describe the development of rigorous tools to determine enclosures of flows of general nonlinear differential equations based on Picard iterations. Particular emphasis is placed on the development of methods that have favorable long term stability, which is achieved using suitable preconditioning and other methods. Applications of the methods are presented, including determinations of rigorous enclosures of flows of ODEs in the theory of chaotic dynamical systems.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

泰勒模型结合了数值方法的优点和代数方法的效率,严格控制资源,以及处理非常复杂问题的能力和符号方法的优点,特别是严格的能力,允许处理函数依赖关系,而不仅仅是点。所得到的微分代数微积分涉及微分和积分代数,特别适用于基于泛函不动点问题的偏微分方程和偏微分方程的研究。我们描述了基于皮卡德迭代的确定一般非线性微分方程流场的严格工具的发展。特别强调的是开发具有良好长期稳定性的方法,这是通过适当的预处理和其他方法实现的。介绍了这些方法的应用,包括混沌动力系统理论中微分方程流动的严格外壳的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigorous integration of flows and ODEs using taylor models
Taylor models combine the advantages of numerical methods and algebraic approaches of efficiency, tightly controlled recourses, and the ability to handle very complex problems with the advantages of symbolic approaches, in particularly the ability to be rigorous and to allow the treatment of functional dependencies instead of merely points. The resulting differential algebraic calculus involving an algebra with differentiation and integration is particularly amenable for the study of ODEs and PDEs based on fixed point problems from functional analysis. We describe the development of rigorous tools to determine enclosures of flows of general nonlinear differential equations based on Picard iterations. Particular emphasis is placed on the development of methods that have favorable long term stability, which is achieved using suitable preconditioning and other methods. Applications of the methods are presented, including determinations of rigorous enclosures of flows of ODEs in the theory of chaotic dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信