优化传感器位置以提高传感器检测系统的最坏情况检测性能

Ryan Vegrzyn, Benedito J. B. Fonseca
{"title":"优化传感器位置以提高传感器检测系统的最坏情况检测性能","authors":"Ryan Vegrzyn, Benedito J. B. Fonseca","doi":"10.1109/CISS50987.2021.9400220","DOIUrl":null,"url":null,"abstract":"Consider designing a sensor system to detect an emitter at an unknown location. For this scenario, it is common to place the sensors in a grid pattern. This paper shows that we can improve the worst case probability of detection over the grid pattern by optimizing the sensor locations. Using Torczon's local search algorithm, our results indicate that this algorithm can improve the worst case probability of detection by up to nearly 23% in the scenario considered.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Sensor Locations to Improve the Worst Case Detection Performance of Sensor Detection Systems\",\"authors\":\"Ryan Vegrzyn, Benedito J. B. Fonseca\",\"doi\":\"10.1109/CISS50987.2021.9400220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider designing a sensor system to detect an emitter at an unknown location. For this scenario, it is common to place the sensors in a grid pattern. This paper shows that we can improve the worst case probability of detection over the grid pattern by optimizing the sensor locations. Using Torczon's local search algorithm, our results indicate that this algorithm can improve the worst case probability of detection by up to nearly 23% in the scenario considered.\",\"PeriodicalId\":228112,\"journal\":{\"name\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS50987.2021.9400220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑设计一个传感器系统来探测未知位置的发射器。对于这种情况,通常将传感器放置在网格模式中。本文表明,我们可以通过优化传感器位置来提高网格模式的最坏情况检测概率。使用Torczon的局部搜索算法,我们的结果表明,在考虑的场景中,该算法可以将最坏情况的检测概率提高近23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Sensor Locations to Improve the Worst Case Detection Performance of Sensor Detection Systems
Consider designing a sensor system to detect an emitter at an unknown location. For this scenario, it is common to place the sensors in a grid pattern. This paper shows that we can improve the worst case probability of detection over the grid pattern by optimizing the sensor locations. Using Torczon's local search algorithm, our results indicate that this algorithm can improve the worst case probability of detection by up to nearly 23% in the scenario considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信