通过整合多个知识来源来量化客户评论

Yuanchao Liu, Xinping Li, Mingjiang Wang
{"title":"通过整合多个知识来源来量化客户评论","authors":"Yuanchao Liu, Xinping Li, Mingjiang Wang","doi":"10.1145/3318299.3318309","DOIUrl":null,"url":null,"abstract":"The recent emergence of a large volume of customer reviews on e--commerce web sites has raised concerns on the provision of intuitive and comprehensive reputation comparisons of feature dimensions. In this paper, we propose and implement a product reputation mining prototype system. A multiple-knowledge based F-O pair extraction model, which is the center piece of our work, is presented for conducting analyses toward deeper sentence-level comprehension of sentiments in customer reviews. Experimental results demonstrate the effectiveness of the proposed method.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Customer Review by Integrating Multiple Source of Knowledge\",\"authors\":\"Yuanchao Liu, Xinping Li, Mingjiang Wang\",\"doi\":\"10.1145/3318299.3318309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent emergence of a large volume of customer reviews on e--commerce web sites has raised concerns on the provision of intuitive and comprehensive reputation comparisons of feature dimensions. In this paper, we propose and implement a product reputation mining prototype system. A multiple-knowledge based F-O pair extraction model, which is the center piece of our work, is presented for conducting analyses toward deeper sentence-level comprehension of sentiments in customer reviews. Experimental results demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在电子商务网站上出现了大量的客户评论,这引起了人们对提供直观和全面的特征维度声誉比较的关注。本文提出并实现了一个产品信誉挖掘原型系统。提出了一种基于多知识的F-O对提取模型,该模型是我们工作的核心部分,用于对客户评论中的情感进行更深层次的句子级理解分析。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Customer Review by Integrating Multiple Source of Knowledge
The recent emergence of a large volume of customer reviews on e--commerce web sites has raised concerns on the provision of intuitive and comprehensive reputation comparisons of feature dimensions. In this paper, we propose and implement a product reputation mining prototype system. A multiple-knowledge based F-O pair extraction model, which is the center piece of our work, is presented for conducting analyses toward deeper sentence-level comprehension of sentiments in customer reviews. Experimental results demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信