使用立体视觉的深度显著性的预先注意检测

M. Z. Aziz, B. Mertsching
{"title":"使用立体视觉的深度显著性的预先注意检测","authors":"M. Z. Aziz, B. Mertsching","doi":"10.1109/AIPR.2010.5759692","DOIUrl":null,"url":null,"abstract":"A quick estimation of depth is required by artificial vision systems for their self survival and navigation through the environment. Following the selection strategy of biological vision, known as visual attention, can help in accelerating extraction of depth for important and relevant portions of given scenes. Recent studies on depth perception in biological vision indicate that disparity is computed using object detection in the brain. The proposed method uses concepts from these studies and determines the shift that objects go through in the stereo frames using data regarding their borders. This enables efficient creation of depth saliency map for artificial visual attention. Results of the proposed model have shown success in selecting those locations from stereo scenes that are salient for human perception in terms of depth.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pre-attentive detection of depth saliency using stereo vision\",\"authors\":\"M. Z. Aziz, B. Mertsching\",\"doi\":\"10.1109/AIPR.2010.5759692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quick estimation of depth is required by artificial vision systems for their self survival and navigation through the environment. Following the selection strategy of biological vision, known as visual attention, can help in accelerating extraction of depth for important and relevant portions of given scenes. Recent studies on depth perception in biological vision indicate that disparity is computed using object detection in the brain. The proposed method uses concepts from these studies and determines the shift that objects go through in the stereo frames using data regarding their borders. This enables efficient creation of depth saliency map for artificial visual attention. Results of the proposed model have shown success in selecting those locations from stereo scenes that are salient for human perception in terms of depth.\",\"PeriodicalId\":128378,\"journal\":{\"name\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2010.5759692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人工视觉系统需要快速估计深度,以便在环境中生存和导航。遵循生物视觉的选择策略,被称为视觉注意,可以帮助加速提取给定场景中重要和相关部分的深度。近年来对生物视觉深度感知的研究表明,视差是通过大脑中的物体检测来计算的。所提出的方法使用这些研究中的概念,并使用有关其边界的数据确定物体在立体框架中所经历的位移。这使得人工视觉注意的深度显著性图的高效创建成为可能。该模型的结果表明,它可以成功地从立体场景中选择那些在深度方面对人类感知显著的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-attentive detection of depth saliency using stereo vision
A quick estimation of depth is required by artificial vision systems for their self survival and navigation through the environment. Following the selection strategy of biological vision, known as visual attention, can help in accelerating extraction of depth for important and relevant portions of given scenes. Recent studies on depth perception in biological vision indicate that disparity is computed using object detection in the brain. The proposed method uses concepts from these studies and determines the shift that objects go through in the stereo frames using data regarding their borders. This enables efficient creation of depth saliency map for artificial visual attention. Results of the proposed model have shown success in selecting those locations from stereo scenes that are salient for human perception in terms of depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信