基于$l_{q}$最小化模型的部分稀疏信号恢复鲁棒性

Liying Ma, Yi Gao, Qingyun He
{"title":"基于$l_{q}$最小化模型的部分稀疏信号恢复鲁棒性","authors":"Liying Ma, Yi Gao, Qingyun He","doi":"10.1109/ICCCWorkshops55477.2022.9896705","DOIUrl":null,"url":null,"abstract":"This paper discusses the recovery of partial sparse signal in compressed sensing. Firstly, a $l_{q} (0 < q< 1)$ non-convex optimization model is developed for partial sparse signal recovery under noisy measurement. Secondly, according to the existing partial $l_{q}$ null space property ($l_{q}$-NSP), we propose the partial $l_{q}$ robust null space property ($l_{q}$-RNSP) and the partial $l_{2,q}$ robust null space property ($1_{2,q}$-RNSP), and it is show that both properties are weaker than the partial restricted isometry property (RIP) proposed in the existing reference. Finally, the robustness estimation of the model solution is established based on the partial RNSP.","PeriodicalId":148869,"journal":{"name":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of Partial Sparse Signal Recovery Based on $l_{q}$ Minimization Model\",\"authors\":\"Liying Ma, Yi Gao, Qingyun He\",\"doi\":\"10.1109/ICCCWorkshops55477.2022.9896705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the recovery of partial sparse signal in compressed sensing. Firstly, a $l_{q} (0 < q< 1)$ non-convex optimization model is developed for partial sparse signal recovery under noisy measurement. Secondly, according to the existing partial $l_{q}$ null space property ($l_{q}$-NSP), we propose the partial $l_{q}$ robust null space property ($l_{q}$-RNSP) and the partial $l_{2,q}$ robust null space property ($1_{2,q}$-RNSP), and it is show that both properties are weaker than the partial restricted isometry property (RIP) proposed in the existing reference. Finally, the robustness estimation of the model solution is established based on the partial RNSP.\",\"PeriodicalId\":148869,\"journal\":{\"name\":\"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops55477.2022.9896705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops55477.2022.9896705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了压缩感知中部分稀疏信号的恢复问题。首先,针对噪声测量下的部分稀疏信号恢复问题,建立了$l_{q} (0 < q< 1)$非凸优化模型。其次,根据已有的部分$l_{q}$零空间性质($l_{q}$-NSP),提出了部分$l_{q}$鲁棒零空间性质($l_{q}$-RNSP)和部分$l_{2,q}$ -RNSP),并证明了这两个性质都弱于已有文献中提出的部分受限等距性质(RIP)。最后,基于部分RNSP建立了模型解的鲁棒性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of Partial Sparse Signal Recovery Based on $l_{q}$ Minimization Model
This paper discusses the recovery of partial sparse signal in compressed sensing. Firstly, a $l_{q} (0 < q< 1)$ non-convex optimization model is developed for partial sparse signal recovery under noisy measurement. Secondly, according to the existing partial $l_{q}$ null space property ($l_{q}$-NSP), we propose the partial $l_{q}$ robust null space property ($l_{q}$-RNSP) and the partial $l_{2,q}$ robust null space property ($1_{2,q}$-RNSP), and it is show that both properties are weaker than the partial restricted isometry property (RIP) proposed in the existing reference. Finally, the robustness estimation of the model solution is established based on the partial RNSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信