挪威钢-混凝土桥梁复合加固监测

V. Vestman, P. Collin, R. Hällmark, Magnús Arason
{"title":"挪威钢-混凝土桥梁复合加固监测","authors":"V. Vestman, P. Collin, R. Hällmark, Magnús Arason","doi":"10.2749/ghent.2021.1709","DOIUrl":null,"url":null,"abstract":"Traffic density and vehicle weight have been increasing over time, which implies that many existing road bridges were not designed for the high service loads and the increased number of load cycles that they are exposed to today. One way to increase the traffic load capacity of non-composite steel- concrete bridges is to use post-install shear connectors and one type of shear connector is the coiled spring pin. This type of connector has advantages for strengthening of existing bridges, since it enables an installation from below while the bridge is still in service and does not bring along removal of concrete and pavement, nor welding to the top flange.This paper describes one ~50 years old Norwegian single span steel-concrete bridge that was strengthened with post-installed coiled spring pins. The strengthening method and the design procedure are presented, along with the results from a field monitoring on Sagstu bridge, performed to evaluate the behaviour of the strengthened structure. The results show that the coiled spring pins counteract the slip and bring along a very good degree of composite action.","PeriodicalId":162435,"journal":{"name":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring of a Norwegian steel-concrete bridge strengthening for composite action\",\"authors\":\"V. Vestman, P. Collin, R. Hällmark, Magnús Arason\",\"doi\":\"10.2749/ghent.2021.1709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic density and vehicle weight have been increasing over time, which implies that many existing road bridges were not designed for the high service loads and the increased number of load cycles that they are exposed to today. One way to increase the traffic load capacity of non-composite steel- concrete bridges is to use post-install shear connectors and one type of shear connector is the coiled spring pin. This type of connector has advantages for strengthening of existing bridges, since it enables an installation from below while the bridge is still in service and does not bring along removal of concrete and pavement, nor welding to the top flange.This paper describes one ~50 years old Norwegian single span steel-concrete bridge that was strengthened with post-installed coiled spring pins. The strengthening method and the design procedure are presented, along with the results from a field monitoring on Sagstu bridge, performed to evaluate the behaviour of the strengthened structure. The results show that the coiled spring pins counteract the slip and bring along a very good degree of composite action.\",\"PeriodicalId\":162435,\"journal\":{\"name\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/ghent.2021.1709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/ghent.2021.1709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,交通密度和车辆重量一直在增加,这意味着许多现有的公路桥并不是为高服务负荷和越来越多的负荷周期而设计的。提高非组合钢-混凝土桥梁交通承载能力的一种方法是采用后剪接头,其中一种剪切接头是螺旋弹簧销。这种类型的连接器在加固现有桥梁方面具有优势,因为它可以在桥梁仍在使用时从下面安装,并且不需要拆除混凝土和路面,也不需要焊接到顶部法兰上。本文介绍了挪威1 ~50年老钢-混凝土单跨桥梁后装卷簧销加固的情况。本文介绍了加固方法和设计步骤,以及对Sagstu大桥进行的现场监测结果,以评估加固后结构的性能。结果表明,螺旋弹簧销抵消了滑移,并带来了很好的复合作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring of a Norwegian steel-concrete bridge strengthening for composite action
Traffic density and vehicle weight have been increasing over time, which implies that many existing road bridges were not designed for the high service loads and the increased number of load cycles that they are exposed to today. One way to increase the traffic load capacity of non-composite steel- concrete bridges is to use post-install shear connectors and one type of shear connector is the coiled spring pin. This type of connector has advantages for strengthening of existing bridges, since it enables an installation from below while the bridge is still in service and does not bring along removal of concrete and pavement, nor welding to the top flange.This paper describes one ~50 years old Norwegian single span steel-concrete bridge that was strengthened with post-installed coiled spring pins. The strengthening method and the design procedure are presented, along with the results from a field monitoring on Sagstu bridge, performed to evaluate the behaviour of the strengthened structure. The results show that the coiled spring pins counteract the slip and bring along a very good degree of composite action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信