增益调度和鲁棒控制中的预滤波

Amit P. Pandey, Martin A. Sehr, M. D. Oliveira
{"title":"增益调度和鲁棒控制中的预滤波","authors":"Amit P. Pandey, Martin A. Sehr, M. D. Oliveira","doi":"10.1109/ACC.2016.7525488","DOIUrl":null,"url":null,"abstract":"We revisit the issue of gain-scheduled versus robust control with a focus on matrix inequalities. It has been established that for uncertain continuous-time linear systems that depend affinely on the uncertainty, gain-scheduled stabilizability implies robust stabilizability. That is, as far as stabilizability is concerned, using a more complex gain-scheduled controller brings no advantage. In the case of performance and discrete-time systems, counter-examples exist that show that gain-scheduling can indeed be advantageous. These proof are unfortunately not constructive, and the associated necessary and sufficient conditions are hard to verify even in low dimensions. In practice, conditions based on Linear Matrix Inequalities (LMIs) are widely used to design robust and gain scheduled controllers at the expense of some conservatism. The main goal of the present paper is to explore to what extent solvability of certain LMIs for gain-scheduled control also implies solvability of the corresponding robust control inequalities. One issue investigated in detail is that of using pre-filters to handle uncertainty appearing in the input matrix. Our results show that this technique, which has been used since the 80s is rarely productive in the sense that solvability of certain gain-scheduled control design problems for the original system augmented with a pre-filter often implies existence of a robust control for the original system, which we calculate explicitly using a projection. One exception seem to be the LMIs based on the condition of Daafouz and Bernussou (2001) for discrete-time systems. A series of examples illustrate the results.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pre-filtering in gain-scheduled and robust control\",\"authors\":\"Amit P. Pandey, Martin A. Sehr, M. D. Oliveira\",\"doi\":\"10.1109/ACC.2016.7525488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the issue of gain-scheduled versus robust control with a focus on matrix inequalities. It has been established that for uncertain continuous-time linear systems that depend affinely on the uncertainty, gain-scheduled stabilizability implies robust stabilizability. That is, as far as stabilizability is concerned, using a more complex gain-scheduled controller brings no advantage. In the case of performance and discrete-time systems, counter-examples exist that show that gain-scheduling can indeed be advantageous. These proof are unfortunately not constructive, and the associated necessary and sufficient conditions are hard to verify even in low dimensions. In practice, conditions based on Linear Matrix Inequalities (LMIs) are widely used to design robust and gain scheduled controllers at the expense of some conservatism. The main goal of the present paper is to explore to what extent solvability of certain LMIs for gain-scheduled control also implies solvability of the corresponding robust control inequalities. One issue investigated in detail is that of using pre-filters to handle uncertainty appearing in the input matrix. Our results show that this technique, which has been used since the 80s is rarely productive in the sense that solvability of certain gain-scheduled control design problems for the original system augmented with a pre-filter often implies existence of a robust control for the original system, which we calculate explicitly using a projection. One exception seem to be the LMIs based on the condition of Daafouz and Bernussou (2001) for discrete-time systems. A series of examples illustrate the results.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7525488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们重新审视增益调度与鲁棒控制的问题,重点是矩阵不等式。建立了对于仿射依赖于不确定性的不确定连续线性系统,增益计划稳定性意味着鲁棒稳定性。也就是说,就稳定性而言,使用更复杂的增益调度控制器没有任何优势。在性能和离散时间系统的情况下,存在反例,表明增益调度确实是有利的。不幸的是,这些证明不是建设性的,并且相关的充分必要条件即使在低维中也难以验证。在实际应用中,基于线性矩阵不等式(lmi)的条件被广泛用于鲁棒和增益调度控制器的设计,代价是一定的保守性。本文的主要目的是探讨增益调度控制的lmi的可解性在多大程度上也意味着相应的鲁棒控制不等式的可解性。详细研究的一个问题是使用预滤波器来处理输入矩阵中出现的不确定性。我们的结果表明,这种自80年代以来一直使用的技术很少有成效,因为某些增益调度控制设计问题的可解性对于原系统增强了预滤波器通常意味着原系统存在鲁棒控制,我们使用投影显式计算。一个例外似乎是基于Daafouz和Bernussou(2001)条件的离散时间系统lmi。一系列的例子说明了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-filtering in gain-scheduled and robust control
We revisit the issue of gain-scheduled versus robust control with a focus on matrix inequalities. It has been established that for uncertain continuous-time linear systems that depend affinely on the uncertainty, gain-scheduled stabilizability implies robust stabilizability. That is, as far as stabilizability is concerned, using a more complex gain-scheduled controller brings no advantage. In the case of performance and discrete-time systems, counter-examples exist that show that gain-scheduling can indeed be advantageous. These proof are unfortunately not constructive, and the associated necessary and sufficient conditions are hard to verify even in low dimensions. In practice, conditions based on Linear Matrix Inequalities (LMIs) are widely used to design robust and gain scheduled controllers at the expense of some conservatism. The main goal of the present paper is to explore to what extent solvability of certain LMIs for gain-scheduled control also implies solvability of the corresponding robust control inequalities. One issue investigated in detail is that of using pre-filters to handle uncertainty appearing in the input matrix. Our results show that this technique, which has been used since the 80s is rarely productive in the sense that solvability of certain gain-scheduled control design problems for the original system augmented with a pre-filter often implies existence of a robust control for the original system, which we calculate explicitly using a projection. One exception seem to be the LMIs based on the condition of Daafouz and Bernussou (2001) for discrete-time systems. A series of examples illustrate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信