光刻模拟三维掩模效应的综合定量表征与分析方法

Enze Li, Yanqiu Li, Yang Liu, Yiyu Sun, Pengzhi Wei
{"title":"光刻模拟三维掩模效应的综合定量表征与分析方法","authors":"Enze Li, Yanqiu Li, Yang Liu, Yiyu Sun, Pengzhi Wei","doi":"10.1117/12.2604846","DOIUrl":null,"url":null,"abstract":"With the increasing requirement of lithographic resolution, the degradation of 3D mask effect on imaging cannot be ignored. The researches of its polarization properties and effect on imaging are of great significance to the development of imaging-based aberration measurement techniques and computational lithography. In this paper, a novel method for comprehensive and quantitative characterization of 3D mask effect is proposed. By comparing the far-field spectrum of Kirchhoff model and 3D mask model, the 3D mask effect is comprehensively and quantitatively characterized as the form of polarization aberration. Pupil-spectrum comprehensive analysis method and background glitch noise culling method are proposed to improve the systematicness and accuracy of 3D mask characterization. The simulation comprehensively analyzes the effect of mask line width and absorber thickness on all polarization properties of the 3D mask effect, showing that this method can provide a more comprehensive analysis of the 3D mask effect compared with the previous methods.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive and quantitative characterization and analysis method of 3D mask effect for lithography simulation\",\"authors\":\"Enze Li, Yanqiu Li, Yang Liu, Yiyu Sun, Pengzhi Wei\",\"doi\":\"10.1117/12.2604846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing requirement of lithographic resolution, the degradation of 3D mask effect on imaging cannot be ignored. The researches of its polarization properties and effect on imaging are of great significance to the development of imaging-based aberration measurement techniques and computational lithography. In this paper, a novel method for comprehensive and quantitative characterization of 3D mask effect is proposed. By comparing the far-field spectrum of Kirchhoff model and 3D mask model, the 3D mask effect is comprehensively and quantitatively characterized as the form of polarization aberration. Pupil-spectrum comprehensive analysis method and background glitch noise culling method are proposed to improve the systematicness and accuracy of 3D mask characterization. The simulation comprehensively analyzes the effect of mask line width and absorber thickness on all polarization properties of the 3D mask effect, showing that this method can provide a more comprehensive analysis of the 3D mask effect compared with the previous methods.\",\"PeriodicalId\":236529,\"journal\":{\"name\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着光刻分辨率要求的不断提高,三维掩模效应对成像的影响不容忽视。研究其偏振特性及其对成像的影响,对基于成像的像差测量技术和计算光刻技术的发展具有重要意义。本文提出了一种综合定量表征三维掩模效应的新方法。通过对比Kirchhoff模型和3D掩模模型的远场光谱,将3D掩模效应以偏振像差的形式进行全面定量表征。提出了瞳孔光谱综合分析方法和背景干扰噪声剔除方法,提高了三维掩模表征的系统性和准确性。仿真综合分析了掩膜线宽度和吸收体厚度对三维掩膜效应各极化特性的影响,表明该方法比以往的方法能够更全面地分析三维掩膜效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive and quantitative characterization and analysis method of 3D mask effect for lithography simulation
With the increasing requirement of lithographic resolution, the degradation of 3D mask effect on imaging cannot be ignored. The researches of its polarization properties and effect on imaging are of great significance to the development of imaging-based aberration measurement techniques and computational lithography. In this paper, a novel method for comprehensive and quantitative characterization of 3D mask effect is proposed. By comparing the far-field spectrum of Kirchhoff model and 3D mask model, the 3D mask effect is comprehensively and quantitatively characterized as the form of polarization aberration. Pupil-spectrum comprehensive analysis method and background glitch noise culling method are proposed to improve the systematicness and accuracy of 3D mask characterization. The simulation comprehensively analyzes the effect of mask line width and absorber thickness on all polarization properties of the 3D mask effect, showing that this method can provide a more comprehensive analysis of the 3D mask effect compared with the previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信