{"title":"一种2MHz 4-48V $\\ mathm {V}_{\\text{IN}}$基于飞电容的浮地GaN DC-DC变换器,具有实时电感峰值电流检测和$6\\ \\ mathm {s}$负载瞬态响应","authors":"Weizhong Chen, Chang Yang, Lei Chen, P. Gui","doi":"10.1109/RFIC54546.2022.9863089","DOIUrl":null,"url":null,"abstract":"This paper presents a 2MHz 4V-to-48V VIN, GaN-based buck-boost converter with optimized buck-boost mode, enhanced safe protection, and fast transient response for automotive Advanced Driving Assistant Systems (ADAS). A flying-capacitor-based floating-ground topology is proposed first time to solve the issue associated with extremely short on time, improve power efficiency in the buck-boost region and provide real-time detection and management of the inductor peak current. This floating-ground technique helps alleviate the problem of efficiency drop in the four-switch buck-boost topology and ensures converter/load safety. An indirect current sensor is also proposed, which allows for sensing the inductor current change in the buck-boost mode without using any bulky sensing resistors and achieves $k$ fast transient response with 100mv-undershoot/80mV-overshoot for 1A load current change. This converter achieves a maximum efficiency of 92% which is comparable to the state-of-the-art buck-boost schemes","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2MHz 4-48V $\\\\mathrm{V}_{\\\\text{IN}}$ Flying-Capacitor Based Floating-Ground GaN DC-DC Converter with Real-Time Inductor Peak-Current Detection and $6\\\\mu \\\\mathrm{s}$ Load Transient Response\",\"authors\":\"Weizhong Chen, Chang Yang, Lei Chen, P. Gui\",\"doi\":\"10.1109/RFIC54546.2022.9863089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 2MHz 4V-to-48V VIN, GaN-based buck-boost converter with optimized buck-boost mode, enhanced safe protection, and fast transient response for automotive Advanced Driving Assistant Systems (ADAS). A flying-capacitor-based floating-ground topology is proposed first time to solve the issue associated with extremely short on time, improve power efficiency in the buck-boost region and provide real-time detection and management of the inductor peak current. This floating-ground technique helps alleviate the problem of efficiency drop in the four-switch buck-boost topology and ensures converter/load safety. An indirect current sensor is also proposed, which allows for sensing the inductor current change in the buck-boost mode without using any bulky sensing resistors and achieves $k$ fast transient response with 100mv-undershoot/80mV-overshoot for 1A load current change. This converter achieves a maximum efficiency of 92% which is comparable to the state-of-the-art buck-boost schemes\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 2MHz 4-48V $\mathrm{V}_{\text{IN}}$ Flying-Capacitor Based Floating-Ground GaN DC-DC Converter with Real-Time Inductor Peak-Current Detection and $6\mu \mathrm{s}$ Load Transient Response
This paper presents a 2MHz 4V-to-48V VIN, GaN-based buck-boost converter with optimized buck-boost mode, enhanced safe protection, and fast transient response for automotive Advanced Driving Assistant Systems (ADAS). A flying-capacitor-based floating-ground topology is proposed first time to solve the issue associated with extremely short on time, improve power efficiency in the buck-boost region and provide real-time detection and management of the inductor peak current. This floating-ground technique helps alleviate the problem of efficiency drop in the four-switch buck-boost topology and ensures converter/load safety. An indirect current sensor is also proposed, which allows for sensing the inductor current change in the buck-boost mode without using any bulky sensing resistors and achieves $k$ fast transient response with 100mv-undershoot/80mV-overshoot for 1A load current change. This converter achieves a maximum efficiency of 92% which is comparable to the state-of-the-art buck-boost schemes