基于视图的主动外观模型

Tim Cootes, G. V. Wheeler, K. N. Walker, C. Taylor
{"title":"基于视图的主动外观模型","authors":"Tim Cootes, G. V. Wheeler, K. N. Walker, C. Taylor","doi":"10.1109/AFGR.2000.840639","DOIUrl":null,"url":null,"abstract":"We demonstrate that a small number of 2D statistical models are sufficient to capture the shape and appearance of a face from any viewpoint (full profile to front-to-parallel). Each model is linear and can be matched rapidly to new images using the active appearance model algorithm. We show how such a set of models can be used to estimate head pose, to track faces through large angles of head rotation and to synthesize faces from unseen viewpoints.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"623","resultStr":"{\"title\":\"View-based active appearance models\",\"authors\":\"Tim Cootes, G. V. Wheeler, K. N. Walker, C. Taylor\",\"doi\":\"10.1109/AFGR.2000.840639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that a small number of 2D statistical models are sufficient to capture the shape and appearance of a face from any viewpoint (full profile to front-to-parallel). Each model is linear and can be matched rapidly to new images using the active appearance model algorithm. We show how such a set of models can be used to estimate head pose, to track faces through large angles of head rotation and to synthesize faces from unseen viewpoints.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"623\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 623

摘要

我们证明,少量的二维统计模型就足以捕捉任何视角(全轮廓到正面到平行)下的脸部形状和外观。每个模型都是线性的,可以使用主动外观模型算法与新图像快速匹配。我们展示了如何利用这样一组模型来估计头部姿态、通过大角度的头部旋转来跟踪人脸,以及如何从未曾见过的视角合成人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
View-based active appearance models
We demonstrate that a small number of 2D statistical models are sufficient to capture the shape and appearance of a face from any viewpoint (full profile to front-to-parallel). Each model is linear and can be matched rapidly to new images using the active appearance model algorithm. We show how such a set of models can be used to estimate head pose, to track faces through large angles of head rotation and to synthesize faces from unseen viewpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信