一种基于强化学习的动态检查点方案

H. Okamura, Y. Nishimura, T. Dohi
{"title":"一种基于强化学习的动态检查点方案","authors":"H. Okamura, Y. Nishimura, T. Dohi","doi":"10.1109/PRDC.2004.1276566","DOIUrl":null,"url":null,"abstract":"We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically the optimal checkpointing policy. More specifically, the representative reinforcement learning algorithm, called the Q-learning algorithm, is used to develop an adaptive checkpointing scheme. In simulation experiments, we examine the asymptotic behavior of the system overhead with adaptive checkpointing and show quantitatively that the proposed dynamic checkpoint algorithm is useful and robust under an incomplete knowledge on the failure time distribution.","PeriodicalId":383639,"journal":{"name":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A dynamic checkpointing scheme based on reinforcement learning\",\"authors\":\"H. Okamura, Y. Nishimura, T. Dohi\",\"doi\":\"10.1109/PRDC.2004.1276566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically the optimal checkpointing policy. More specifically, the representative reinforcement learning algorithm, called the Q-learning algorithm, is used to develop an adaptive checkpointing scheme. In simulation experiments, we examine the asymptotic behavior of the system overhead with adaptive checkpointing and show quantitatively that the proposed dynamic checkpoint algorithm is useful and robust under an incomplete knowledge on the failure time distribution.\",\"PeriodicalId\":383639,\"journal\":{\"name\":\"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2004.1276566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2004.1276566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们为单进程应用程序开发了一种新的检查点方案。首先,我们利用半马尔可夫决策过程对检查点方案进行建模,并应用强化学习算法统计估计最优检查点策略。更具体地说,代表性的强化学习算法,称为q -学习算法,用于开发自适应检查点方案。在仿真实验中,我们用自适应检查点检验了系统开销的渐近行为,并定量地证明了所提出的动态检查点算法在不完全了解故障时间分布的情况下是有用的和鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic checkpointing scheme based on reinforcement learning
We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically the optimal checkpointing policy. More specifically, the representative reinforcement learning algorithm, called the Q-learning algorithm, is used to develop an adaptive checkpointing scheme. In simulation experiments, we examine the asymptotic behavior of the system overhead with adaptive checkpointing and show quantitatively that the proposed dynamic checkpoint algorithm is useful and robust under an incomplete knowledge on the failure time distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信