{"title":"系泊波能装置的流固土相互作用","authors":"J. Tom, D. Rijnsdorp, R. Ragni, D. White","doi":"10.1115/omae2019-95419","DOIUrl":null,"url":null,"abstract":"\n This paper explores the response of a wave energy device during extreme and operational conditions and the effect of this response on the geotechnical stability of the associated taut moorings. The non-hydrostatic wave-flow model SWASH is used to simulate the response of a taut-moored wave energy converter. The predicted forces acting on the mooring system are used to compute the build-up of excess pore pressures in the soil around the mooring anchor and the resulting changes in strength and capacity. An initial loss of strength is followed by a subsequent increase in capacity, associated with long-term cyclic loading and hardening due to consolidation. The analyses show how cyclic loading may actually benefit and reduce anchoring requirements for wave energy devices. It demonstrates the viability of a close interdisciplinary approach towards an optimized and cost-effective design of mooring systems, which form a significant proportion of expected capital expenditures.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fluid-Structure-Soil Interaction of a Moored Wave Energy Device\",\"authors\":\"J. Tom, D. Rijnsdorp, R. Ragni, D. White\",\"doi\":\"10.1115/omae2019-95419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper explores the response of a wave energy device during extreme and operational conditions and the effect of this response on the geotechnical stability of the associated taut moorings. The non-hydrostatic wave-flow model SWASH is used to simulate the response of a taut-moored wave energy converter. The predicted forces acting on the mooring system are used to compute the build-up of excess pore pressures in the soil around the mooring anchor and the resulting changes in strength and capacity. An initial loss of strength is followed by a subsequent increase in capacity, associated with long-term cyclic loading and hardening due to consolidation. The analyses show how cyclic loading may actually benefit and reduce anchoring requirements for wave energy devices. It demonstrates the viability of a close interdisciplinary approach towards an optimized and cost-effective design of mooring systems, which form a significant proportion of expected capital expenditures.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluid-Structure-Soil Interaction of a Moored Wave Energy Device
This paper explores the response of a wave energy device during extreme and operational conditions and the effect of this response on the geotechnical stability of the associated taut moorings. The non-hydrostatic wave-flow model SWASH is used to simulate the response of a taut-moored wave energy converter. The predicted forces acting on the mooring system are used to compute the build-up of excess pore pressures in the soil around the mooring anchor and the resulting changes in strength and capacity. An initial loss of strength is followed by a subsequent increase in capacity, associated with long-term cyclic loading and hardening due to consolidation. The analyses show how cyclic loading may actually benefit and reduce anchoring requirements for wave energy devices. It demonstrates the viability of a close interdisciplinary approach towards an optimized and cost-effective design of mooring systems, which form a significant proportion of expected capital expenditures.