关于弱刚性和弱混合包络半群

E. Akin, E. Glasner, B. Weiss
{"title":"关于弱刚性和弱混合包络半群","authors":"E. Akin, E. Glasner, B. Weiss","doi":"10.1090/conm/744/14985","DOIUrl":null,"url":null,"abstract":"The question we deal with here, which was presented to us by Joe Auslander and Anima Nagar, is whether there is a nontrivial cascade (X,T) whose enveloping semigroup, as a dynamical system, is topologically weakly mixing (WM). After an introductory section recalling some definitions and classic results, we establish some necessary conditions for this to happen, and in the final section we show, using Ratner's theory, that the enveloping semigroup of the `time one map' of a classical horocycle flow is weakly mixing.","PeriodicalId":412693,"journal":{"name":"Dynamics: Topology and Numbers","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On weak rigidity and weakly mixing enveloping\\n semigroups\",\"authors\":\"E. Akin, E. Glasner, B. Weiss\",\"doi\":\"10.1090/conm/744/14985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question we deal with here, which was presented to us by Joe Auslander and Anima Nagar, is whether there is a nontrivial cascade (X,T) whose enveloping semigroup, as a dynamical system, is topologically weakly mixing (WM). After an introductory section recalling some definitions and classic results, we establish some necessary conditions for this to happen, and in the final section we show, using Ratner's theory, that the enveloping semigroup of the `time one map' of a classical horocycle flow is weakly mixing.\",\"PeriodicalId\":412693,\"journal\":{\"name\":\"Dynamics: Topology and Numbers\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics: Topology and Numbers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/744/14985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics: Topology and Numbers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/744/14985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们这里要处理的问题,是Joe Auslander和Anima Nagar提出的,是否存在一个非平凡级联(X,T),其包络半群作为一个动力系统,是拓扑弱混合(WM)。在介绍部分回顾了一些定义和经典结果之后,我们建立了这种情况发生的一些必要条件,并在最后一节中使用Ratner的理论证明了经典环流的“时间一映射”的包络半群是弱混合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weak rigidity and weakly mixing enveloping semigroups
The question we deal with here, which was presented to us by Joe Auslander and Anima Nagar, is whether there is a nontrivial cascade (X,T) whose enveloping semigroup, as a dynamical system, is topologically weakly mixing (WM). After an introductory section recalling some definitions and classic results, we establish some necessary conditions for this to happen, and in the final section we show, using Ratner's theory, that the enveloping semigroup of the `time one map' of a classical horocycle flow is weakly mixing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信