自动复杂指令识别有效的应用程序映射到api

A. S. Nery, N. Nedjah, F. França, L. Józwiak, H. Corporaal
{"title":"自动复杂指令识别有效的应用程序映射到api","authors":"A. S. Nery, N. Nedjah, F. França, L. Józwiak, H. Corporaal","doi":"10.1109/LASCAS.2014.6820291","DOIUrl":null,"url":null,"abstract":"Instruction Set Customization is a well-known technique to enhance the performance and efficiency of Application-Specific Processors (ASIPs). An extensive application profiling can indicate which parts of a given application, or class of applications, are most frequently executed, enabling the implementation of such frequently executed parts in hardware as custom instructions. However, a naive ad hoc instruction set customization process may identify and select poor instruction extension candidates, which may not result in a significantly improved performance with low circuit-area and energy footprints. In this paper we propose and discuss an efficient instruction set customization method and automatic tool, which exploit the maximal common subgraphs (common operation patterns) of the most frequently executed basic blocks of a given application. The speed results from our tool for a VLIW ASIP are provided for a set of benchmark applications. The average execution time reduction ranges from 30% to 40%, with only a few custom instructions.","PeriodicalId":235336,"journal":{"name":"2014 IEEE 5th Latin American Symposium on Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic complex instruction identification for efficient application mapping onto ASIPs\",\"authors\":\"A. S. Nery, N. Nedjah, F. França, L. Józwiak, H. Corporaal\",\"doi\":\"10.1109/LASCAS.2014.6820291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instruction Set Customization is a well-known technique to enhance the performance and efficiency of Application-Specific Processors (ASIPs). An extensive application profiling can indicate which parts of a given application, or class of applications, are most frequently executed, enabling the implementation of such frequently executed parts in hardware as custom instructions. However, a naive ad hoc instruction set customization process may identify and select poor instruction extension candidates, which may not result in a significantly improved performance with low circuit-area and energy footprints. In this paper we propose and discuss an efficient instruction set customization method and automatic tool, which exploit the maximal common subgraphs (common operation patterns) of the most frequently executed basic blocks of a given application. The speed results from our tool for a VLIW ASIP are provided for a set of benchmark applications. The average execution time reduction ranges from 30% to 40%, with only a few custom instructions.\",\"PeriodicalId\":235336,\"journal\":{\"name\":\"2014 IEEE 5th Latin American Symposium on Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 5th Latin American Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2014.6820291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 5th Latin American Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2014.6820291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

指令集定制是一种众所周知的提高专用处理器(Application-Specific processor, asip)性能和效率的技术。广泛的应用程序分析可以指示给定应用程序或应用程序类的哪些部分最频繁执行,从而支持在硬件中实现这些频繁执行的部分作为自定义指令。然而,一个简单的特别指令集定制过程可能会识别和选择较差的指令扩展候选,这可能不会在低电路面积和能量足迹的情况下显著提高性能。本文提出并讨论了一种有效的指令集定制方法和自动工具,该方法利用给定应用程序中执行频率最高的基本块的最大公共子图(公共操作模式)。我们的VLIW ASIP工具的速度结果提供了一组基准应用程序。平均执行时间减少幅度从30%到40%不等,仅使用少数自定义指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic complex instruction identification for efficient application mapping onto ASIPs
Instruction Set Customization is a well-known technique to enhance the performance and efficiency of Application-Specific Processors (ASIPs). An extensive application profiling can indicate which parts of a given application, or class of applications, are most frequently executed, enabling the implementation of such frequently executed parts in hardware as custom instructions. However, a naive ad hoc instruction set customization process may identify and select poor instruction extension candidates, which may not result in a significantly improved performance with low circuit-area and energy footprints. In this paper we propose and discuss an efficient instruction set customization method and automatic tool, which exploit the maximal common subgraphs (common operation patterns) of the most frequently executed basic blocks of a given application. The speed results from our tool for a VLIW ASIP are provided for a set of benchmark applications. The average execution time reduction ranges from 30% to 40%, with only a few custom instructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信