{"title":"塞来昔布在介孔硅中的约束增强口服生物利用度","authors":"Feng Wang, T. Barnes, C. Prestidge","doi":"10.2478/mesbi-2013-0001","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased Cmax (0.91 ± 0.09 μg/mL vs. 0.50 ± 0.16 μg/mL vs. 0.73 ± 0.23 μg/mL) and reduced Tmax (1.0 ± 0.0 h vs. 2.8 ± 0.8 h vs. 3.4 ± 1.0 h). Single point correlation was established between in vitro dissolution efficiency (% DE) and in vivo absolute bioavailability or Cmax . Porous silicon microparticles can be formulated as an effective orally dosed solid dispersion preparation for celecoxib","PeriodicalId":157396,"journal":{"name":"Open Material Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability\",\"authors\":\"Feng Wang, T. Barnes, C. Prestidge\",\"doi\":\"10.2478/mesbi-2013-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased Cmax (0.91 ± 0.09 μg/mL vs. 0.50 ± 0.16 μg/mL vs. 0.73 ± 0.23 μg/mL) and reduced Tmax (1.0 ± 0.0 h vs. 2.8 ± 0.8 h vs. 3.4 ± 1.0 h). Single point correlation was established between in vitro dissolution efficiency (% DE) and in vivo absolute bioavailability or Cmax . Porous silicon microparticles can be formulated as an effective orally dosed solid dispersion preparation for celecoxib\",\"PeriodicalId\":157396,\"journal\":{\"name\":\"Open Material Sciences\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Material Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mesbi-2013-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Material Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mesbi-2013-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
摘要研究了塞来昔布(CEL)包埋在氧化多孔硅基体(pSiox)颗粒中的物理化学特性;确定CEL与纯药物和创新制剂相比的口服剂量反应;发展体内体外相关性(IVIVC)。通过溶剂分配将CEL装入pSiox基质中,用FTIR、DSC、TGA和XRD对CEL的物理状态进行表征,并与CEL的体外溶出行为相关。采用纯CEL、Celebrexr和CEL- psiox微颗粒水悬浮液,测定口服CEL的单剂量药代动力学参数。CEL- psiox配方的物理化学测试证实了CEL以无定形或非晶体形式包裹在多孔纳米结构中。与CEL颗粒或Celebrexr相比,CEL- psiox表现出更优的药代动力学,即绝对生物利用度提高(96.2% vs. 65.2% vs. 88.1%), Cmax提高(0.91±0.09 μg/mL vs. 0.50±0.16 μg/mL vs. 0.73±0.23 μg/mL), Tmax降低(1.0±0.0 h vs. 2.8±0.8 h vs. 3.4±1.0 h),体外溶出效率(% DE)与体内绝对生物利用度(Cmax)之间建立了单点相关性。多孔硅微颗粒可配制成塞来昔布的有效口服剂量固体分散制剂
Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability
Abstract We investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased Cmax (0.91 ± 0.09 μg/mL vs. 0.50 ± 0.16 μg/mL vs. 0.73 ± 0.23 μg/mL) and reduced Tmax (1.0 ± 0.0 h vs. 2.8 ± 0.8 h vs. 3.4 ± 1.0 h). Single point correlation was established between in vitro dissolution efficiency (% DE) and in vivo absolute bioavailability or Cmax . Porous silicon microparticles can be formulated as an effective orally dosed solid dispersion preparation for celecoxib