基于潜在狄利克雷分配的twitter主题建模

D. Ostrowski
{"title":"基于潜在狄利克雷分配的twitter主题建模","authors":"D. Ostrowski","doi":"10.1109/ICOSC.2015.7050858","DOIUrl":null,"url":null,"abstract":"Due to its predictive nature, Social Media has proved to be an important resource in support of the identification of trends. In Customer Relationship Management there is a need beyond trend identification which includes understanding the topics propagated through Social Networks. In this paper, we explore topic modeling by considering the techniques of Latent Dirichlet Allocation which is a generative probabilistic model for a collection of discrete data. We evaluate this technique from the perspective of classification as well as identification of noteworthy topics as it is applied to a filtered collection of Twitter messages. Experiments show that these methods are effective for the identification of sub-topics as well as to support classification within large-scale corpora.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Using latent dirichlet allocation for topic modelling in twitter\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICOSC.2015.7050858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its predictive nature, Social Media has proved to be an important resource in support of the identification of trends. In Customer Relationship Management there is a need beyond trend identification which includes understanding the topics propagated through Social Networks. In this paper, we explore topic modeling by considering the techniques of Latent Dirichlet Allocation which is a generative probabilistic model for a collection of discrete data. We evaluate this technique from the perspective of classification as well as identification of noteworthy topics as it is applied to a filtered collection of Twitter messages. Experiments show that these methods are effective for the identification of sub-topics as well as to support classification within large-scale corpora.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

由于其预测性,社交媒体已被证明是支持识别趋势的重要资源。在客户关系管理中,除了趋势识别之外,还需要了解通过社交网络传播的主题。在本文中,我们通过考虑隐狄利克雷分配技术来探索主题建模,隐狄利克雷分配是一种离散数据集合的生成概率模型。我们从分类和识别值得注意的主题的角度来评估这种技术,因为它应用于过滤后的Twitter消息集合。实验表明,这些方法能够有效地识别子主题,并支持大规模语料库中的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using latent dirichlet allocation for topic modelling in twitter
Due to its predictive nature, Social Media has proved to be an important resource in support of the identification of trends. In Customer Relationship Management there is a need beyond trend identification which includes understanding the topics propagated through Social Networks. In this paper, we explore topic modeling by considering the techniques of Latent Dirichlet Allocation which is a generative probabilistic model for a collection of discrete data. We evaluate this technique from the perspective of classification as well as identification of noteworthy topics as it is applied to a filtered collection of Twitter messages. Experiments show that these methods are effective for the identification of sub-topics as well as to support classification within large-scale corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信