通过过滤错误标记的训练数据示例,改进Hyperion图像的机载分析

U. Rebbapragada, L. Mandrake, K. Wagstaff, D. Gleeson, R. Castaño, Steve Ankuo Chien, C. Brodley
{"title":"通过过滤错误标记的训练数据示例,改进Hyperion图像的机载分析","authors":"U. Rebbapragada, L. Mandrake, K. Wagstaff, D. Gleeson, R. Castaño, Steve Ankuo Chien, C. Brodley","doi":"10.1109/AERO.2009.4839580","DOIUrl":null,"url":null,"abstract":"This paper presents PWEM, a technique for detecting class label noise in training data. PWEM detects mislabeled examples by assigning to each training example a probability that its label is correct. PWEM calculates this probability by clustering examples from pairs of classes together and analyzing the distribution of labels within each cluster to derive the probability of each label's correctness. We discuss how one can use the probabilities output by PWEM to filter, mitigate, or correct mislabeled training examples. We then provide an in-depth discussion of how we applied PWEM to a sulfur detector that labels pixels from Hyperion images of the Borup-Fiord pass in Northern Canada. PWEM assigned a large number of the sulfur training examples low probabilities, indicating severe mislabeling within the sulfur class. The filtering of those low confidence examples resulted in a cleaner training set and improved the median false positive rate of the classifier by at least 29%.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improving onboard analysis of Hyperion images by filtering mislabeled training data examples\",\"authors\":\"U. Rebbapragada, L. Mandrake, K. Wagstaff, D. Gleeson, R. Castaño, Steve Ankuo Chien, C. Brodley\",\"doi\":\"10.1109/AERO.2009.4839580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents PWEM, a technique for detecting class label noise in training data. PWEM detects mislabeled examples by assigning to each training example a probability that its label is correct. PWEM calculates this probability by clustering examples from pairs of classes together and analyzing the distribution of labels within each cluster to derive the probability of each label's correctness. We discuss how one can use the probabilities output by PWEM to filter, mitigate, or correct mislabeled training examples. We then provide an in-depth discussion of how we applied PWEM to a sulfur detector that labels pixels from Hyperion images of the Borup-Fiord pass in Northern Canada. PWEM assigned a large number of the sulfur training examples low probabilities, indicating severe mislabeling within the sulfur class. The filtering of those low confidence examples resulted in a cleaner training set and improved the median false positive rate of the classifier by at least 29%.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种检测训练数据中类别标记噪声的PWEM技术。PWEM通过为每个训练样本分配其标签正确的概率来检测错误标记的样本。PWEM通过将成对的类中的示例聚在一起,并分析每个簇内标签的分布,从而得出每个标签正确的概率,从而计算出这个概率。我们讨论了如何使用PWEM的概率输出来过滤、减轻或纠正错误标记的训练示例。然后,我们深入讨论了如何将PWEM应用于硫探测器,该探测器可以标记来自加拿大北部borup - ford通道的Hyperion图像的像素。PWEM分配了大量低概率的硫磺训练样本,这表明在硫磺类中存在严重的错误标记。对这些低置信度示例的过滤产生了一个更干净的训练集,并将分类器的中位数误报率提高了至少29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving onboard analysis of Hyperion images by filtering mislabeled training data examples
This paper presents PWEM, a technique for detecting class label noise in training data. PWEM detects mislabeled examples by assigning to each training example a probability that its label is correct. PWEM calculates this probability by clustering examples from pairs of classes together and analyzing the distribution of labels within each cluster to derive the probability of each label's correctness. We discuss how one can use the probabilities output by PWEM to filter, mitigate, or correct mislabeled training examples. We then provide an in-depth discussion of how we applied PWEM to a sulfur detector that labels pixels from Hyperion images of the Borup-Fiord pass in Northern Canada. PWEM assigned a large number of the sulfur training examples low probabilities, indicating severe mislabeling within the sulfur class. The filtering of those low confidence examples resulted in a cleaner training set and improved the median false positive rate of the classifier by at least 29%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信