利用统计机器学习方法预测太阳辐照度和光伏发电输出

Y. Kamarianakis, Yannis Pantazis, E. Kalligiannaki, T. Katsaounis, K. Kotsovos, I. Gereige, Marwan Abdullah, A. Jamal, A. Tzavaras
{"title":"利用统计机器学习方法预测太阳辐照度和光伏发电输出","authors":"Y. Kamarianakis, Yannis Pantazis, E. Kalligiannaki, T. Katsaounis, K. Kotsovos, I. Gereige, Marwan Abdullah, A. Jamal, A. Tzavaras","doi":"10.1109/SASG57022.2022.10199879","DOIUrl":null,"url":null,"abstract":"Energy production from solar photovoltaic (PV) plants is unpredictable, mainly due to the stochastic formation and movement of clouds or aerosol - dust particles which scatter or disperse solar radiation. Accurate forecasts of PV output are essential to Distribution and Transportation System Operators as they assist efficient solar energy trading and management of electricity grids. This work evaluates an autoregressive, computationally-light KNN-regression scheme (TSFKNN) for hourly, day-ahead forecasts of solar irradiance and energy yield of various PV technologies. The model is being tested and validated using data measured in Thuwal, Saudi Arabia. The available measured records span a 60-month period. The developed forecasting models are designed for online systems and provide increased levels of accuracy and low computational cost. Several parametric and nonparametric specifications, coupled with conventional versus outlier-robust estimation procedures are tested, in order to derive an optimal month-specific daily profile (MDP). Current results demonstrate that including intraday variability to the monthly-based irradiance models achieve improved predictive accuracy between 10% and 25% on average.","PeriodicalId":206589,"journal":{"name":"2022 Saudi Arabia Smart Grid (SASG)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day-Ahead Forecasting of Solar Irradiance & PV Power Output Through Statistical Machine Learning Methods\",\"authors\":\"Y. Kamarianakis, Yannis Pantazis, E. Kalligiannaki, T. Katsaounis, K. Kotsovos, I. Gereige, Marwan Abdullah, A. Jamal, A. Tzavaras\",\"doi\":\"10.1109/SASG57022.2022.10199879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy production from solar photovoltaic (PV) plants is unpredictable, mainly due to the stochastic formation and movement of clouds or aerosol - dust particles which scatter or disperse solar radiation. Accurate forecasts of PV output are essential to Distribution and Transportation System Operators as they assist efficient solar energy trading and management of electricity grids. This work evaluates an autoregressive, computationally-light KNN-regression scheme (TSFKNN) for hourly, day-ahead forecasts of solar irradiance and energy yield of various PV technologies. The model is being tested and validated using data measured in Thuwal, Saudi Arabia. The available measured records span a 60-month period. The developed forecasting models are designed for online systems and provide increased levels of accuracy and low computational cost. Several parametric and nonparametric specifications, coupled with conventional versus outlier-robust estimation procedures are tested, in order to derive an optimal month-specific daily profile (MDP). Current results demonstrate that including intraday variability to the monthly-based irradiance models achieve improved predictive accuracy between 10% and 25% on average.\",\"PeriodicalId\":206589,\"journal\":{\"name\":\"2022 Saudi Arabia Smart Grid (SASG)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Saudi Arabia Smart Grid (SASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASG57022.2022.10199879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Saudi Arabia Smart Grid (SASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASG57022.2022.10199879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能光伏电站产生的能量是不可预测的,主要是由于云层或气溶胶-尘埃颗粒的随机形成和运动,它们会散射或分散太阳辐射。准确的光伏输出预测对配电和运输系统运营商至关重要,因为它们有助于有效的太阳能交易和电网管理。本研究评估了一种自回归、计算轻量级knn回归方案(TSFKNN),用于每小时、提前一天预测各种光伏技术的太阳辐照度和发电量。该模型正在使用在沙特阿拉伯Thuwal测量的数据进行测试和验证。现有的测量记录跨度为60个月。开发的预测模型是为在线系统设计的,具有更高的精度和较低的计算成本。几个参数和非参数规范,结合传统的与异常鲁棒估计程序进行了测试,以获得最佳的特定月份的每日概况(MDP)。目前的结果表明,在基于月的辐照度模型中加入日内变率可以提高预测精度,平均在10%到25%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Day-Ahead Forecasting of Solar Irradiance & PV Power Output Through Statistical Machine Learning Methods
Energy production from solar photovoltaic (PV) plants is unpredictable, mainly due to the stochastic formation and movement of clouds or aerosol - dust particles which scatter or disperse solar radiation. Accurate forecasts of PV output are essential to Distribution and Transportation System Operators as they assist efficient solar energy trading and management of electricity grids. This work evaluates an autoregressive, computationally-light KNN-regression scheme (TSFKNN) for hourly, day-ahead forecasts of solar irradiance and energy yield of various PV technologies. The model is being tested and validated using data measured in Thuwal, Saudi Arabia. The available measured records span a 60-month period. The developed forecasting models are designed for online systems and provide increased levels of accuracy and low computational cost. Several parametric and nonparametric specifications, coupled with conventional versus outlier-robust estimation procedures are tested, in order to derive an optimal month-specific daily profile (MDP). Current results demonstrate that including intraday variability to the monthly-based irradiance models achieve improved predictive accuracy between 10% and 25% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信