费雪方程的有限差分数值解

S. Alhazmi
{"title":"费雪方程的有限差分数值解","authors":"S. Alhazmi","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.12.27","DOIUrl":null,"url":null,"abstract":"A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical solution of Fisher's equation using finite difference\",\"authors\":\"S. Alhazmi\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.12.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种用有限差分法逼近非线性Fisher反应扩散方程数值解的数值方法。该方法是基于用有限差分法替换费雪方程中的每一项。该方法的优点是将问题简化为一个非线性系统,用牛顿法推导和求解。对FTCS和CN方法进行了介绍、比较和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of Fisher's equation using finite difference
A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信