{"title":"费雪方程的有限差分数值解","authors":"S. Alhazmi","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.12.27","DOIUrl":null,"url":null,"abstract":"A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical solution of Fisher's equation using finite difference\",\"authors\":\"S. Alhazmi\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.12.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical solution of Fisher's equation using finite difference
A numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction diffusion equation with finite difference method. The method is based on replacing each terms in the Fisher's equation using finite difference method. The proposed method has the advantage of reducing the problem to a nonlinear system, which will be derived and solved using Newton method. FTCS and CN method will be introduced, compared and tested.