评估多语言摘要的机器学习方法

S. Ellouze, M. Jaoua, Lamia Hadrich Belguith
{"title":"评估多语言摘要的机器学习方法","authors":"S. Ellouze, M. Jaoua, Lamia Hadrich Belguith","doi":"10.18653/v1/W17-1007","DOIUrl":null,"url":null,"abstract":"The present paper introduces a new MultiLing text summary evaluation method. This method relies on machine learning approach which operates by combining multiple features to build models that predict the human score (overall responsiveness) of a new summary. We have tried several single and “ensemble learning” classifiers to build the best model. We have experimented our method in summary level evaluation where we evaluate each text summary separately. The correlation between built models and human score is better than the correlation between baselines and manual score.","PeriodicalId":113878,"journal":{"name":"MultiLing@EACL","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Machine Learning Approach to Evaluate MultiLingual Summaries\",\"authors\":\"S. Ellouze, M. Jaoua, Lamia Hadrich Belguith\",\"doi\":\"10.18653/v1/W17-1007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper introduces a new MultiLing text summary evaluation method. This method relies on machine learning approach which operates by combining multiple features to build models that predict the human score (overall responsiveness) of a new summary. We have tried several single and “ensemble learning” classifiers to build the best model. We have experimented our method in summary level evaluation where we evaluate each text summary separately. The correlation between built models and human score is better than the correlation between baselines and manual score.\",\"PeriodicalId\":113878,\"journal\":{\"name\":\"MultiLing@EACL\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MultiLing@EACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MultiLing@EACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种新的MultiLing文本摘要评价方法。该方法依赖于机器学习方法,该方法通过组合多个特征来构建模型,预测新摘要的人类得分(总体响应性)。我们尝试了几个单一和“集成学习”分类器来构建最佳模型。我们在总结级别评估中试验了我们的方法,我们分别评估每个文本摘要。建立的模型与人工评分的相关性优于基线与人工评分的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Approach to Evaluate MultiLingual Summaries
The present paper introduces a new MultiLing text summary evaluation method. This method relies on machine learning approach which operates by combining multiple features to build models that predict the human score (overall responsiveness) of a new summary. We have tried several single and “ensemble learning” classifiers to build the best model. We have experimented our method in summary level evaluation where we evaluate each text summary separately. The correlation between built models and human score is better than the correlation between baselines and manual score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信