预测心肺对增量运动试验的反应

Elena Baralis, T. Cerquitelli, S. Chiusano, A. Giordano, A. Mezzani, D. Susta, Xin Xiao
{"title":"预测心肺对增量运动试验的反应","authors":"Elena Baralis, T. Cerquitelli, S. Chiusano, A. Giordano, A. Mezzani, D. Susta, Xin Xiao","doi":"10.1109/CBMS.2015.60","DOIUrl":null,"url":null,"abstract":"Cardiopulmonary exercise testing is a non-invasive method widely used to monitor various physiological signals, describing the cardiac and respiratory response of the patient to increasing workload. Since this method is physically very demanding, innovative data analysis techniques are needed to predict patient response thus lowering body stress and avoiding cardiopulmonary overload. This paper proposes the Cardiopulmonary Response Prediction (CRP) framework for early predicting the physiological signal values that can be reached during an incremental exercise test. The learning phase creates different models tailored to specific conditions (i.e., single-test and multiple-test models). Each model can be exploited in the real-time stream prediction phase to periodically predict, during the test execution, signal values achievable by the patient. Experimental results on a real dataset showed that CRP prediction is performed with a limited and acceptable error.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting Cardiopulmonary Response to Incremental Exercise Test\",\"authors\":\"Elena Baralis, T. Cerquitelli, S. Chiusano, A. Giordano, A. Mezzani, D. Susta, Xin Xiao\",\"doi\":\"10.1109/CBMS.2015.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiopulmonary exercise testing is a non-invasive method widely used to monitor various physiological signals, describing the cardiac and respiratory response of the patient to increasing workload. Since this method is physically very demanding, innovative data analysis techniques are needed to predict patient response thus lowering body stress and avoiding cardiopulmonary overload. This paper proposes the Cardiopulmonary Response Prediction (CRP) framework for early predicting the physiological signal values that can be reached during an incremental exercise test. The learning phase creates different models tailored to specific conditions (i.e., single-test and multiple-test models). Each model can be exploited in the real-time stream prediction phase to periodically predict, during the test execution, signal values achievable by the patient. Experimental results on a real dataset showed that CRP prediction is performed with a limited and acceptable error.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

心肺运动试验是一种无创方法,广泛用于监测各种生理信号,描述患者对增加负荷的心脏和呼吸反应。由于这种方法对身体的要求很高,因此需要创新的数据分析技术来预测患者的反应,从而降低身体压力并避免心肺过载。本文提出了心肺反应预测(CRP)框架,用于早期预测在增量运动试验中可能达到的生理信号值。学习阶段创建针对特定条件的不同模型(即,单测试和多测试模型)。每个模型都可以在实时流预测阶段进行利用,以便在测试执行期间周期性地预测患者可达到的信号值。在真实数据集上的实验结果表明,CRP预测具有有限且可接受的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Cardiopulmonary Response to Incremental Exercise Test
Cardiopulmonary exercise testing is a non-invasive method widely used to monitor various physiological signals, describing the cardiac and respiratory response of the patient to increasing workload. Since this method is physically very demanding, innovative data analysis techniques are needed to predict patient response thus lowering body stress and avoiding cardiopulmonary overload. This paper proposes the Cardiopulmonary Response Prediction (CRP) framework for early predicting the physiological signal values that can be reached during an incremental exercise test. The learning phase creates different models tailored to specific conditions (i.e., single-test and multiple-test models). Each model can be exploited in the real-time stream prediction phase to periodically predict, during the test execution, signal values achievable by the patient. Experimental results on a real dataset showed that CRP prediction is performed with a limited and acceptable error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信