对交易的最佳参数

Kirill V. Temlyakov
{"title":"对交易的最佳参数","authors":"Kirill V. Temlyakov","doi":"10.2139/ssrn.2140111","DOIUrl":null,"url":null,"abstract":"Pairs trading is a very common trading strategy, and being able to obtain parameters that tell us when to trade and when to get out is of great importance. In this paper I propose a methodology that can improve the performance of traditional pairs trading strategy. I use stochastic beam search algorithm to find the best parameters in in-sample data within a given industry, and then test those parameters on out of sample data. My results outperform the results obtained by tools traditionally employed by the industry practitioners.","PeriodicalId":214104,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Parameters to Pairs Trading\",\"authors\":\"Kirill V. Temlyakov\",\"doi\":\"10.2139/ssrn.2140111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairs trading is a very common trading strategy, and being able to obtain parameters that tell us when to trade and when to get out is of great importance. In this paper I propose a methodology that can improve the performance of traditional pairs trading strategy. I use stochastic beam search algorithm to find the best parameters in in-sample data within a given industry, and then test those parameters on out of sample data. My results outperform the results obtained by tools traditionally employed by the industry practitioners.\",\"PeriodicalId\":214104,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2140111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2140111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

配对交易是一种非常常见的交易策略,能够获得告诉我们何时交易和何时退出的参数是非常重要的。本文提出了一种改进传统配对交易策略性能的方法。我使用随机束搜索算法在给定行业的样本内数据中找到最佳参数,然后在样本外数据上测试这些参数。我的结果优于行业从业者传统上使用的工具获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Parameters to Pairs Trading
Pairs trading is a very common trading strategy, and being able to obtain parameters that tell us when to trade and when to get out is of great importance. In this paper I propose a methodology that can improve the performance of traditional pairs trading strategy. I use stochastic beam search algorithm to find the best parameters in in-sample data within a given industry, and then test those parameters on out of sample data. My results outperform the results obtained by tools traditionally employed by the industry practitioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信